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1 Theory: Mechanics of Lipid Bilayers

In this section, we review the theory of the mechanics of lipid bilayers, as detailed extensively
in Refs. [1, 2]. We first describe the geometry and kinematics of a lipid membrane patch, then
describe the membrane’s constitutitive behavior, and end with the equations of motion. None of
the aspects of the theoretical formulation are new, with the exception of the axisymmetric equations
in Sec. 1.6—which include viscous effects.

1.1 Kinematics

We begin by describing the kinematics of an arbitrarily curved and deforming surface, within the
framework of differential geometry. In the following, we use the convention where subscripts and
superscripts indicate covariant and contravariant components, respectively. Greek indices take
values {1, 2}, and we employ the Einstein summation convention in which Greek indices repeated
in a subscript and superscript are summed over.

A point x on a two-dimensional surface P embedded in a three-dimensional Euclidean space R3

is represented at time t as
x = x̃(ξα, t) = x̂(θα, t) = x̌(ζα, t) . (1)

Here, ξα, θα, and ζα refer to Lagrangian, in-plane Eulerian, and arbitrary Lagrangian–Eulerian
descriptions (see Ref. [3]). For the sake of generality, we use the arbitrary Lagrangian–Eulerian
parametrization in describing the theory. Such a parametrization allows us to represent surfaces
differently based on the problem at hand. In particular, our general equations are specialized with
the Lagrangian or convected coordinates, ξα, for our non-axisymmetric simulations, while we use
the surface-fixed coordinates, θα, in our axisymmetric simulations.

At any point x ∈ P, we define the covariant tangent vector

aα :=
∂x

∂ζα
= x,α , (2)

where (•),α denotes the partial derivative with respect to ζα, as well as the components of the metric
tensor,

aαβ := aα · aβ . (3)

The tangent vectors form a basis {a1,a2,n} of R3 (see Fig. 1). with the normal vector n given by

n :=
a1 × a2
||a1 × a2||

. (4)

We define the dual basis {a1,a2,n}, with contravariant tangent vectors aα given by

aα = aαβaβ , (5)

which satisfy
aα · aβ = δβα , (6)
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Figure 1: Schematic of a membrane patch P. At each point x on the membrane patch P, we define
the in-plane tangent vectors a1 and a2 as well as the vector n normal to the plane spanned by
aα. The set {aα} constitutes a basis for the tangent plane, while the set {a1,a2,n} forms a basis
of R3. At every point x ∈ ∂P, we define the in-plane unit tangent τ and in-plane unit normal ν,
respectively along and normal to ∂P, which also form a basis of the tangent plane.

where the contravariant metric tensor components are defined as aαβ = (aαβ)−1. An arbitrary
vector h can be written in the covariant and contravariant bases as

h = hαaα + hn = hαa
α + hn . (7)

On the boundary ∂P of the surface P, it is convenient to introduce a different basis {ν, τ ,n},
where ν is the in-plane unit normal and τ is the in-plane unit tangent at the boundary. We define

τ := aα
∂ζα

∂`
(8)

and
ν := τ × n , (9)

where ` is the arclength parametrizing the patch boundary ∂P. Next, we define the curvature
components

bαβ := n · aα,β = −n,β · aα , (10)

and the mean and Gaussian curvatures as

H =
1

2
(κ1 + κ2) =

1

2
aαβbαβ and κ = κ1κ2 ,= det(bαβ)/det(aαβ) , (11)

respectively. Figure 2 shows schematics of surface shapes with different combinations of principal
curvatures, which will be useful in differentiating the morphologies identified in the main text.
Figure 2a shows a spherical cap, for which the principal curvatures are equal. In contrast, the
different principal axes of the ellipsoidal section in Fig. 2b yield two principal curvatures of equal
sign but different magnitude. A section of a cylinder is shown in Fig. 2c, which has one vanishing
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(a) Schematic of a spherical cap. Spherical sections
have two equal principal curvatures.
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(b) Schematic of an ellipsoidal cap. Ellipsoidal sec-
tions have differing principal curvatures of the same
sign.
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(c) Schematic of a cylindrical cap. Cylindrical sec-
tions have one vanishing and one non-zero principal
curvature.
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(d) Schematic of a saddle shape. Saddles are marked
by two principal curvatures that differ in their sign.
The saddle shown here has two equal but opposite
principal curvatures such that H = 0 .

Figure 2: Comparison of different geometries with qualitatively different combinations of principal
curvatures.

principal curvature and one non-zero principal curvature. In Fig. 2d, a saddle structure is plotted,
where the two principal curvatures are equal and opposite such that the mean curvature vanishes.

The material time derivative of any quantity (•) is defined as the rate of change that quantity
for a given material point, written as

˙(•) :=
∂(•)
∂t

∣∣∣
ξα
, (12)

which has different forms in the different coordinate systems. The velocity v := ẋ of any point can
be written equivalently as

v =
∂x̃

∂t

∣∣∣
ξα

=
∂x̂

∂t

∣∣∣
θα

+
∂x̂

∂θα
∂θα

∂t

∣∣∣
ξβ

=
∂x̌

∂t

∣∣∣
ζα

+
∂x̌

∂ζα
∂ζα

∂t

∣∣∣
ξβ
, (13)

and can be decomposed in the {aα,n} basis as

v = vαaα + vn , (14)
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where
v = v · n and vα = v · aα . (15)

Moreover, the material time derivative of the covariant tangent vectors is given by

ȧα = v,α such that ȧαβ = v,α · aβ + v,β · aα . (16)

We emphasize that the different surface parametrizations yield the same velocity v despite the
functions x̃, x̂, and x̌ being different, and also Eq. (16) is true regardless of surface parametrization.
A more in-depth discussion of the surface parametrizations and their kinematics is provided in our
previous works [1, 3].

1.2 Balance Laws

In the following sections, the balances of mass, linear and angular momentum will be stated in both
their global and local forms. For detailed derivations, the interested reader is referred to our earlier
work [1, 2] and the references provided therein.

1.2.1 Mass Balance

The mass balance in its global form is stated as

d

dt

∫
B
ρ da = 0 , (17)

where ρ is the areal membrane density and B is an arbitrary subdomain of P with boundary ∂B.
Applying the Reynolds transport theorem yields, by virtue of the arbitrariness of B,

ρ̇+ ρ(vα;α − 2vH) = 0 , (18)

which is the local statement of mass balance—referred to as the continuity equation. When the
material is area-incompressible, the density ρ is constant and the continuity equation (18) simplifies
to

vα;α − 2vH = 0 , (19)

which is also known as the incompressibility constraint.

1.2.2 Linear Momentum Balance

The global form of the linear momentum balance is given by

d

dt

∫
B
ρv da =

∫
B
ρb da+

∫
∂B
T ds , (20)

with the body force per unit mass b. The traction vector T at the patch boundary, due to Cauchy’s
triangle argument on arbitrarily curved surfaces [4], can be written as

T = T ανα , (21)

with T α being the traction vector along aα. The traction vectors can be decomposed in the {aα,n}
basis as

T α = Nαβaβ + Sαn , (22)
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where Nαβ and Sα are the in-plane and transverse shear components of the traction vectors, re-
spectively. The Cauchy stress tensor can then be written as

σ = Nαβaα ⊗ aβ + Sαaα ⊗ n , (23)

such that T = σTν = σTναa
α = T ανα, in agreement with Eq. (21). The local form of the linear

momentum balance can then be obtained as

ρv̇ = ρb+ T α;α . (24)

1.2.3 Angular Momentum

The global form of the angular momentum balance is written as

d

dt

∫
B
ρx× v da =

∫
B
ρx× b da+

∫
∂B
x× T ds+

∫
∂B
m ds , (25)

wherem is the moment per unit length applied on the boundary. We can expressm asm = n×M ,
with M being the director traction, which can be decomposed as

M = −Mαβaβ , (26)

where Mαβ are the couple-stress components (see Ref. [1]). We then find that the angular momen-
tum balance dictates

1. Sα = −Mβα
;β , (27)

2. σαβ := Nαβ − bβµMµα is symmetric . (28)

Note that σαβ are the couple-free in-plane stress components.

1.3 Membrane Energetics and Constitutive Behavior

The Helmholtz free energy density of a lipid membrane is denoted ψ(aαβ, bαβ, T ), where T is the
membrane temperature. For a general energy of this form, the membrane stresses and couple-
stresses are determined via irreversible thermodynamics [1], and in the linear irreversible regime are
given by

σαβ = ρ

(
∂ψ

∂aαβ
+

∂ψ

∂aβα

)
+ παβ (29)

and

Mαβ =
ρ

2

(
∂ψ

∂bαβ
+

∂ψ

∂bβα

)
, (30)

where
παβ = ζaαγ ȧγδa

δβ (31)

are the viscous stresses due to in-plane incompressible flow—with ζ the in-plane dynamic viscosity.
For lipid membranes, the functional dependence of the Helmholtz free energy density can be

equivalently written as
ψ(aαβ, bαβ, T ) = ψ̄(J,H, κ, T ) , (32)
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where J is the Jacobian determinant of areal expansion.
For lipid membranes, the free energy consists of bending and surface tension terms—the latter

arising from the incompressibility constraint. The bending energy per unit current area, called the
Helfrich energy [5], is given by

wh = kb (H − C)2 + kgκ , (33)

where C is the spontaneous curvature. We will discuss how the spontaneous curvature is numerically
implemented in Sec. 2.3. The incompressibility of the membrane is captured by augmenting the
Helmholtz free energy density with

wq =
1

J
λ (J − 1) , (34)

where λ is a Lagrange Multiplier field associated with the incompressibility constraint

J − 1 = 0 . (35)

Physically, λ represents a surface tension. The Helmholtz free energy per unit area is then given by

ρψ̄ = wh + wq . (36)

1.4 General Equations of Motion

The membrane equations of motion are obtained by calculating the membrane stresses from the free
energy density (36), and then substituting the stresses into the equations of motion via Eqs. (22),
(27), and (28). We present the equations of motion in component form, and to this end, the body
force is split into in-plane and out-of-plane components as

ρb = pn+ bαaα . (37)

The equations of motion in the normal and in-plane directions, as well as the incompressibility
constraint, are given by

ρ (v,t + vαwα) = p+ παβbαβ − 2kb (H − C)
(
H2 +HC − κ

)
− kb∆(H − C) + 2λH (38)

ρ
(
vα,t − vwα + vµwαµ

)
= ρbα + πµα;µ − 2kb (H − C)C ,α + λ,α , (39)

and
−vα;α + 2vH = 0 , (40)

where ∆(•) := (•);αβ aαβ is the surface Laplacian. Furthermore, in Eqs. (38) and (39), the inertial
terms on the left-hand side use the shorthand

wα
β := vβ;α − vbβα and wα := vλbλα + v,α . (41)

We calculate the terms in Eqs. (38) and (39) involving the viscous stresses to be

πµα;µ = 2ζ
(
dµα;µ − v,µbµα − 2vH,µa

µα
)

(42)
and

παβbαβ = 2ζ
[
bαβdαβ − 2v

(
2H2 − κ

)]
, (43)

where dαβ := 1
2(vα;β + vβ;α) are the components of the in-plane velocity gradients.
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1.5 General Boundary Conditions

To solve the above equations of motion, suitable boundary conditions need to be applied. The
moment and forces on the boundary in the directions ν, τ and n, respectively, are given by

M = kb (H − C) + kgκτ , (44)

fν = kb

[
(H − C)2 − (H − C)κν

]
− kgξ2 + λ+ παβνανβ , (45)

fτ = −ξ [kb (H − C) + kgκτ ] + παβτανβ , (46)

fn = −kb (H − C),ν + kg
dξ

d`
. (47)

Here, ξ denotes the twist of the boundary curve which is parametrized by its arclength `. At every
point on the membrane boundary, we specify either the in-plane velocity components vα or the
in-plane forces fν and fτ . For the out-of-plane equation, we specify the membrane position and
either its slope or the moment M . With the aforementioned boundary conditions, our equations of
motion are mathematically well-posed.

1.6 Axisymmetric Equations of Motion

We now present the axisymmetric equations of motion. The restriction to axisymmetry is not
included in the previously published theoretical frameworks [1, 2].

Surfaces of revolution are generally parametrized by their arclength. However, when spontaneous
curvature is to be prescribed locally, arclength is not a suitable parametrization to determine the
coated region as the surface deforms [6, 7]. Hence, an area parametrization is chosen instead, such
that the intrinsic coordinates are given by

ζα = {a, φ} , (48)

ψ̃

a1

z

r

P

Figure 3: Schematic of the axisymmetric setup and variables. The rotationally symmetric body
is represented as a line in the r − z−plane. The second basis vector a2 lies perpendicular to this
plane.
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where a denotes the area parametrization—analogous to an arclength parametrization—and φ is
the standard azimuthal angle.

The position of a point x on the axisymmetric surface P is then given by

x = r
(
ζ1, t

)
er
(
ζ2
)

+ z
(
ζ1, t

)
ez , (49)

from which the tangent and normal vectors, respectively, can be computed as

a1 = r
(
ζ1, t

)′
er
(
ζ2
)

+ z
(
ζ1, t

)′
ez , (50)

a2 = r
(
ζ1, t

)
eφ
(
ζ2
)
, (51)

n = − sin ψ̃ er + cos ψ̃ ez , (52)

respectively, where ψ̃ is defined in Fig. 3 and (•)′ := ∂ (•) /∂ζ1. The derivatives r′
(
ζ1, t

)
and z′

(
ζ1, t

)
can be determined from the area parametrization to be

r′ =
1

2πr
cos ψ̃ = J̃ cos ψ̃ , (53)

z′ =
1

2πr
sin ψ̃ = J̃ sin ψ̃ , (54)

with J̃ := (2πr)−1. The covariant components of the metric and curvature tensor, respectively, are

[aαβ] =

(
J̃2 0

0 r2

)
and [bαβ] =

(
J̃ ψ̃′ 0

0 r sin ψ̃

)
. (55)

The mean curvature and Gaussian curvature are computed from the curvature tensor to be

H =
1

2

(
1

J̃
ψ̃′ +

1

r
sin ψ̃

)
, and K =

1

J̃r
ψ̃′ sin ψ̃ . (56)

In order to obtain the viscous contributions, the velocity components need to be derived. To this
end, we calculate

v :=
dx(ζα, t)

dt
=
(
ṙ + r′va

)
er +

(
ż + z′va

)
ez + rvφez , (57)

where va = ζ̇1, and vφ = ζ̇2 . The normal velocity is given by

v := v · n = cos ψ̃ ż − sin ψ̃ ṙ . (58)

For later notational convenience, we introduce

L := kb

(
r

J̃
(H − C)′

)
, (59)

such that
L′ = kbrJ̃∆ (H − C) . (60)
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The equations of motion, presented in the general case in Eqs. (38), (39), and (40), are found
in the axisymmetric case to be given by

J̃rρ
(
v,t + vavaJ̃ ψ̃′ + vav′ + vφvφr sin ψ̃

)
= pJ̃r + 2λHJ̃r − 2kbJ̃r (H − C)

(
H2 +HC − κ

)
+ 2ζJ̃r

(
2
ψ̃′

J̃
vH − ψ̃′r′

J̃r
va +

va

r2
r′ sin ψ̃ − 2v

(
2H2 − κ

))
− L′ , (61)

ρ

(
(va),t − 2vva

ψ̃′

J̃
− vv′

J̃2
+ va(va)′ − vavar′

r
− vφvφ rr

′

J̃2

)

= ρba − 2kb (H − C)C ′ + 2ζ
sin ψ̃

r

(
v′ + J̃ ψ̃′va

)
+ λ′ , (62)

ρ

((
vφ
)
,t
− 2vvφ

sin ψ̃

r
+ va

(
vφ
)′

+ 2vavφ
r′

r

)
= ρbφ +

ζ

J̃2

(
3r′

r

(
vφ
)′

+ (vφ)
′′
)
, (63)

and
0 = (va)′ − 2vH . (64)

Equations (61)–(64) are the axisymmetric shape equation, in-plane equations in the a- and φ di-
rection, and the continuity equation, respectively. Equation (62) was simplified using the first
derivative of the continuity equation with respect to a.

2 Numerical Methods

The following section is focused on the numerical approaches to solve both the axisymmetric and
three-dimensional equations of motion. Our general, non-axisymmetric numerical methods are based
on the isogeometric, Lagrangian finite element methods for arbitrarily curved and deforming sur-
faces which were first developed in Ref. [8]. In addition to such an implementation, we developed
an ALE theory to describe lipid membranes [3]—which simplifies to both Lagrangian and in-plane
Eulerian surface descriptions in limiting cases. Our axisymmetric equations and the corresponding
simulations are in-plane Eulerian, and thus our ALE theory provided a unified formalism which
which to describe all of our numerics. Accordingly, due to our previous theoretical and numer-
ical developments, we are now able to study arbitrary membrane deformations and the ensuing
morphologies. We note that in all of our numerics, inertial terms are ignored.

2.1 Axisymmetric Numerical Method

The axisymmetric equations of motion can be solved by rewriting them as a system of first order
ODEs. For this purpose, we define

Γ :=
(
vφ
)′

, (65)
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such that Eqs. (61)–(64) can be written as the system of equations

r′ = J̃ cos ψ̃ , (66)

z′ = J sin ψ̃ , (67)

ψ̃′ = J̃

(
2H − 1

r
sin ψ̃

)
, (68)

H ′ =
LJ̃
kbr

+ C ′ , (69)

L′ = pJ̃r + 2λHJ̃r − 2kbJ̃r (H − C)
(
H2 +HC − κ

)
+

2ζJ̃r

(
2
ψ̃′

J̃
vH − ψ̃′r′

J̃r
va +

va

r2
r′ sin ψ̃ − 2v

(
2H2 − κ

))
, (70)

λ′ = −ρba + 2kb (H − C)C ′ − 2ζ
sin ψ̃

r

(
v′ + J̃ ψ̃′va

)
, (71)(

vφ
)′

= Γ , (72)

Γ′ = −3r′

r
Γ− J̃2

ζ
ρbφ , (73)

(va)′ = 2vH . (74)

To numerically compute the time derivatives ṙ and ż, an implicit finite difference scheme in time is
introduced for r(a, t) and z(a, t), such that

Ṙ(a, t) =
R(a, t+ ∆t)−R(a, t)

∆t
+O(∆t) , (75)

Ṙ′(a, t) =
R′(a, t+ ∆t)−R′(a, t)

∆t
+O(∆t) , (76)

where R ∈ {r, z}. For the latter, sufficient continuity is required such that(
Ṙ
)′

=
˙

(R)′ , (77)

where the horizontal bar indicates to which term the time derivative is applied.

2.2 General, Non-Axisymmetric Numerical Method

The numerical method presented in the following is based on Ref. [8], to which we refer the reader
for additional details. Since we employ a Lagrangian parametrization of the surface, all of our
integrals over the current membrane surface are converted into integrals over the reference membrane
configuration.

2.2.1 Weak Forms

We begin by revisiting the mass balance given in (17) and note that we can analogously state∫
B
ρ da =

∫
B0
ρ0 da ∀t ∈ [0, T ] , (78)
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where B0 denotes a subset of the membrane’s reference configuration P0, and ρ0 denotes the corre-
sponding reference areal mass density. By assuming incompressibility, Eq. (78) becomes

J =
ρ0
ρ

= 1 . (79)

Multiplying (34) by a variation δλ ∈ Q, where Q is the space of admissible functions for λ, and
integrating over the membrane surface yields

Gg =

∫
P0

δλ (J − 1) dA . (80)

Thus, the incompressibility constraint is satisfied if Gg = 0 for any admissible variation δλ. Next,
the linear momentum balance in (24) is contracted with a suitable variation δx ∈ V, where V is an
admissible space. The resulting weak form is then split into the three contributions

Ginertia =

∫
P
δx · ρv̇ da , (81)

Gint =

∫
P

1

2
δaαβσ

αβ da+

∫
P
δbαβM

αβ da , (82)

Gext =

∫
P
δx · ρb da+

∫
∂P
δx · T ds+

∫
∂P
δn ·M ds . (83)

Since Gg ≡ 0, the weak formulation of the problem can be written as

Gg +Ginertia +Gint −Gext = 0 . (84)

2.2.2 Finite Element Discretization

We introduce a discretization of the reference domain P0 as

P0 =

nel⋃
e=1

Ωe
0 , (85)

where Ωe
0 refers to a single element e. A position x ∈ P and the Lagrange multiplier as well as their

variations are then approximated as

xh = Nxx , (86)

λh = Nλλ , (87)

δxh = Nxδx , (88)

δλh = Nλδλ . (89)

In Eqs. (86)–(89), x and λ are the discretized position and surface tension degree of freedom vectors,
with Nx and Nλ the corresponding finite element method shape functions, written in array form.
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Figure 4: Domain used for simulations. The circular geometry is discretized by finite elements. On
the outer boundary, a boundary tension is applied to simulate the resting tension far away from
the region of non-zero spontaneous curvature. The outer boundary is constrained to only displace
within the plane defined by P0. A non-zero spontaneous curvature is applied in the center of the
circular geometry and is linearly increased over time.

2.2.3 Discretized Weak Form and Linearization

In the following, it is assumed that inertial terms are negligible, such that Ginertia ≈ 0. In this
subsection, we omit the superscript h of the interpolated quantities for clarity. Inserting the inter-
polations (86)–(89) into the weak forms in (84) then yields

δx · (fint − fext) + δλ · fq = 0 . (90)

By defining the residual vector

R(x,λ) :=
[
(fint − fext)

T , fTq

]T
, (91)

the solution is obtained by solving
R
(
x, λ

)
= 0 . (92)

Equation (92) is then solved by using the classical Newton-Raphson scheme

R
(
xn+1,λn+1

)
≈ R(xn,λn) +∇R

∣∣
xn,λn∆u , (93)

where ∆u denotes the increment in x and λ.

2.2.4 Meshing

The elements employed here are based on isogeometric finite elements such that the interpolation
functions are Non-Uniform Rational B-Splines (NURBS). In an attempt to satisfy the LBB-condition
associated with the incompressibility constraint [9–11], we interpolate x with third order polynomials
and λ with first order polynomials. Despite this, our scheme is not LBB-stable, however we supress
the LBB-instability by fixing the resting tension everywhere on the boundary—which, while not
sufficiently general, is suitable for our calculations [8]. In particular, we did not observe any surface
tension oscillations, which are characteristic for LBB-unstable schemes. However, as shown in
Ref. [3], the LBB-instability can be properly eliminated within our computational framework, as
will be done in future studies.

We mesh the membrane surface with the recently introduced Locally-Refined NURBS (LR-
NURBS) to ensure meeting sufficient convergence criteria [12]. Elements that lie within a circular
region of interest, where the spontaneous curvature is imposed, are refined multiple times with a
transition region towards coarser elements in the peripheral region (see Fig. 4).
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Figure 5: The spontaneous curvature distribution is shown for R0 = 100 nm. It is chosen similarly
to Ref. [7].

2.3 Application of Spontaneous Curvature

We enforce a non-zero spontaneous curvature only in a chosen patch given by the following distri-
bution of spontaneous curvature.

C(X̃1, X̃2) = C0e
−(X̃2

1+X̃
2
2)

β
2 (94)

with

X̃1 =
cos Φ

(
X1 −X0

1

)
+ sin Φ

(
X2 −X0

2

)
a

, (95)

X̃2 =
− sin Φ

(
X1 −X0

1

)
+ cos Φ

(
X2 −X0

2

)
b

, (96)

where the superscript 0 indicates the coordinates of the center of the patch, a and b are the length
of the principal axes, and the angle Φ describes the rotation of the elliptic patch. We note that the
spontaneous curvature is defined by the coordinates of a material point in the reference configuration.
The spontaneous curvature distribution with principal axes length a = b = R0 nm is shown in Fig. 5,
for the case of R0 = 100 nm. In all of our simulations in the main text, we choose the two principal
axes to be of slightly different lengths: a = R0(1 + δ) and b = R0(1− δ), where δ = 0.02.

3 Convergence Study

In the following, we examine the convergence of the axisymmetric and non-axisymmetric simulations
with respect to the time step and the mesh size for different sizes of the coated region, R0, and rate
of change of spontaneous curvature, Ċ0. All convergence results are shown in both the low and high
resting tension cases. Convergence is evaluated with the total Helfrich elastic energy (c.f. Eq. (33))

Π :=

∫
P

(
k
(
H − C

)2
+ kgκ

)
da , (97)
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as the surface tension does not contribute to the energy since J = 1 everywhere. Note that in all
results presented here, parameters are chosen as specified in Table I of the main text.

3.1 Axisymmetric Convergence

The convergence of our axisymmetric simulations with respect to the number of grid points is
shown in Fig. 6. In all cases, the spacing between grid points decreases as we approach the axis
of symmetry. We find that in both the low and high resting tension cases, simulations results are
largely independent of the number of grid points, m̄. Hence, even the coarsest mesh is a reasonable
choice for our simulations.

We also consider the convergence of the axisymmetric simulations with respect to the timestep
size ∆t, as shown in Fig. 7. Such calculations were repeated for different rates of change of sponta-
neous curvature, but the results are omitted here for brevity.

3.2 Non-Axisymmetric Convergence

In what follows, we investigate h-refinement of our general, non-axisymmetric finite element solu-
tions. We again study the convergence at two different resting tensions: the low resting tension of
λ0 = 10−4 pN/nm where buds form, and the high resting tension of λ0 = 10−1 pN/nm where ridges
form. Results are plotted with respect to the number of mesh refinements, nref , where elements
are initially refined more in the center of the patch than at the outer edge. Details of our meshing
procedure can be found in Ref. [12], and a refined mesh with nref = 3 is shown in Fig. 4. We note
that the mesh is refined prior to the simulation, and is thus not adaptive. Furthermore, we also
studied the convergence of the outer mesh elements, with the results omitted here for brevity.

Mesh Refinement: Low Resting Tension. Convergence results for the low resting tension
case are shown in Fig. 8a. With nref = 3, the solution appears to be converged over a large range
of values for C. However, at C ≈ 0.018 1/nm, the solution branches into a higher energy path—
corresponding to a twisted bud, as discussed further in Sec. 3.2.2. In our study, no results beyond
this divergence point are reported.

Mesh Refinement: High Resting Tension. Convergence results from the ridge-forming, high
resting tension case are shown in Fig. 8b. The solution is converged for all refinement steps nref
shown. However, at C ≈ 0.008 1/nm the spherical cap at each end of the ridge splits to form
another ridge, as shown in Fig. 9. These are, however, mesh-dependent and care must be applied to
understand membrane morphologies involving branched ridges. Furthermore, as will be discussed
in detail in Sec. 3.2.1, when spontaneous curvature is applied on a strictly circular patch, the
non-axisymmetric simulations result in branched ridge structures. However, these branched ridge
structures depend on the choice of the mesh—as is the case for branched ridges forming from elliptic
patches. We leave the analysis of instabilities involving branched ridges to a future study.

Mesh Refinement: Refinement Region. The size of the region in which mesh elements are
refined is rref . In both the low and high resting tension cases, we found converged results for all
refinement regions considered (Fig. 10).
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Figure 6: Convergence study of the axisymmetric setup with respect to the number of grid points.
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Figure 7: Convergence study of the axisymmetric setup with respect to the number of timesteps.
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Time Step Refinement. Convergence with respect to the timestep size is shown in Fig. 11, and
indicates are results are converged with respect to changing ∆t, for the entire range of tensions
considered. Such results were again reproduced for different rates of change of the spontaneous
curvature, however the results are omitted here for brevity.

3.2.1 Elliptic vs. Circular Patches

In this section, we study the nature of the solutions arising form both circular and elliptic patches.
A perfectly circular patch that induces curvature is not physically feasible, owing to thermal fluctu-
ations or other inhomogeneities. Ellipticity is the first symmetry breaking perturbation of a circular
region. It is for this reason that we use slightly elliptic patches in studying the morphologies resulting
from non-axisymmetric simulations.

Figure 12 shows the elastic energy (97) at different mesh refinement steps, when the coated area
is circular. The peaks and subsequent reduction in energy indicate where the solution branches into
non-axisymmetric shapes. Such branching is mesh-dependent, and as numerically circular shapes
can only be approximated, initially circular patches would introduce mesh-dependent effects into
our simulations. Note that with finer meshes, the numerical error associated with a circular patch
decreases, and though instabilities still arise, branching is only observed at higher spontaneous cur-
vatures C0. Thus, we conclude that circular patches, due to their inherent symmetry, prolong the
axisymmetric shapes leading to higher energies, and become unstable at sufficiently large sponta-
neous curvature C0. Furthermore, the ridge morphology resulting from circular patches is shaped
like a plus sign, such that the two lines are aligned with mesh lines (Fig. 13). This indicates that
the ridge morphology is determined by our choice of the mesh.

Finally, we comment on the magnitude of the ellipticity of the coated region, as slightly elliptical
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Figure 8: Stored energy depending on the number of refinement steps in the center of the computational
domain at different resting tensions in the non-axisymmetric setup.
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Figure 9: When the spontaneous curvature is increased further after the ridge has formed, the
spherical caps of the ridge undergo a another branching. This instability is of the same nature as
the initial ridge formation.

coated regions were used in the main text. The principal semi-axes of the coated region are given
by

a = (1 + δ)R0 , b = (1− δ)R0 , (98)

and the elastic energy corresponding to different values of δ is plotted in Fig. 14. With increasing δ,
the branching point is not accompanied by a peak in the elastic energy. Furthermore, all branches
correspond to the formation of ridges. However, the exact values of the branching points are
dependent on δ: for small δ, the pits remain axisymmetric to higher spontaneous curvatures—
approaching the case of strictly circular patches. The latter preserve axisymmetry in a constrained
manner, which leads to higher energies.

3.2.2 Twisted Buds

We revisit the convergence behavior discussed in Fig. 8a at a low resting tension, now considering a
larger range of the spontaneous curvature C0. We find that the solutions do not converge after some
value of C0 as shown in Fig. 15. An example of the resulting shape is shown in Fig. 16, where we find
the bud begins to twist about its vertical axis. When the spontaneous curvature is increased further,
the twist of the neck becomes more pronounced until the buds shoot up into a vertical tube. Since
such results are not converged, they require careful further study. Recall that in the high resting
tension case, we introduced an elliptic perturbation to obtain stable shapes. Here however, it is not
clear what the required symmetry breaking perturbation is in the low resting tension case to obtain
converged results at high spontaneous curvatures. Thus, this result is excluded from the main text.

4 Additional results

4.1 Fully Closed Axisymmetric Buds

In the main text, for the sake of comparison with the non-axisymmetric results, the axisymmetric
results were shown at a spontaneous curvature C0 for which the bud is not yet fully closed. In
general, we find non-axisymmetric membrane morphologies in which the neck twists (see Fig. 16),
while in axisymmetric simulations the neck continues to constrict further (see Fig. 17). We find
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Figure 10: Stored energy depending on the size of the refined area in the center of the computational domain
at different resting tensions in the non-axisymmetric setup.
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Figure 11: Stored energy depending on the timestep size at different resting tensions in the non-axisymmetric
setup.
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tional domain at λ0 = 10−4 nm, for non-axisymmetric solutions.

Figure 16: Close-up of the neck of a closed bud. The inset reveals that the spherical bud is twisted
with respect to the flat lipid bilayer. Hence, it is apparent that the closed bud is not axisymmetric
as well.

Figure 17: Closed bud in the axisymmetric setup at λ = 10−4 pN/nm and C = 0.023 1/nm. The
neck is becoming strongly constricted, as opposed to the non-axisymmetric setup.
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0 . Here, we find that H ≈ C and thus κ2 ≈ 2C.

the bud is nearly spherical in shape, and the neck continues to tighten until the bud closes off—at
which point our axisymmetric continuum simulations are no longer valid.

4.2 Ridges at Lower Resting Tensions

In the main text, shallow ridges were reported at high resting tension. However, as the resting
tension is lowered and approaches its threshold value λthresh0 , a taller ridge develops as shown in
Fig. 18. The cylindrical nature of the ridge is more apparent in such cases.
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