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An arbitrary Lagrangian–Eulerian finite element method and numerical implementation
for curved and deforming lipid membranes is presented here. The membrane surface is
endowed with a mesh whose in-plane motion need not depend on the in-plane flow of
lipids. Instead, in-plane mesh dynamics can be specified arbitrarily. A new class of mesh
motions is introduced, where the mesh velocity satisfies the dynamical equations of a user-
specified two-dimensional material. A Lagrange multiplier constrains the out-of-plane
membrane and mesh velocities to be equal, such that the mesh and material always overlap.
An associated numerical inf–sup instability ensues, and is removed by adapting established
techniques in the finite element analysis of fluids. In our implementation, the aforemen-
tioned Lagrange multiplier is projected onto a discontinuous space of piecewise linear
functions. The new mesh motion is compared to established Lagrangian and Eulerian for-
mulations by investigating a pre-eminent numerical benchmark of biological significance:
the pulling of a membrane tether from a flat patch and its subsequent lateral translation.
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1. Introduction
In this paper we present an arbitrary Lagrangian–Eulerian (ALE) finite element method
and open-source Julia code (Sahu 2024) to simulate the dynamics of curved and deforming
lipid membranes. Our developments build on ALE theories of biological membranes
where the surface parametrisation is independent of the in-plane flow of lipids (Hu,
Zhang & W. 2007; Torres-Sánchez et al. 2019; Sahu et al. 2020b). In our simulations, we
arbitrarily specify the dynamics of the discretised surface and avoid highly distorted mesh
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elements – all while not altering membrane dynamics. The utility of our implementation
is demonstrated by analysing a biologically motivated scenario that is difficult to
simulate with existing numerical methods: tether formation, elongation and subsequent
translation.

Biological membranes are two-dimensional (2-D) materials, comprised of lipids and
proteins, which make up the boundary of the cell and many of its internal organelles.
The lipids and proteins flow in-plane as a 2-D fluid, while the membrane bends out-
of-plane as an elastic shell. Such membranes play a fundamental role in many cellular
processes, including endocytosis (Higgins & McMahon 2002; McMahon & Boucrot
2011), cell migration (Lauffenburger & Horwitz 1996) and tether network dynamics within
the cell (Terasaki, Chen & Fujiwara 1986; Sciaky et al. 1997). Lipid membranes often
undergo dramatic shape changes in which their in-plane and out-of-plane dynamics are
coupled. Consequently, comprehensive models and advanced numerical techniques are
needed to describe membrane behaviour. In the early 1970’s, the seminal contributions
of Canham (1970), Helfrich (1973) and Evans (1974) – all of which can be viewed
as extensions of Naghdi’s fundamental contributions to shell theory (Naghdi 1973) –
laid the foundation for theoretical developments (Evans & Hochmuth 1978; Waxman
1984; Zhong-can & Helfrich 1989; Steigmann 1998, 1999; Capovilla & Guven 2002;
Guven 2004; Pollard, Al-Izzi & Morris 2024) and analysis (Seifert, Berndl & Lipowsky
1991; Seifert & Langer 1993; Bar-Ziv et al. 1995; Fournier 1996; Goldstein et al. 1996;
Seifert 1997; Powers, Huber & Goldstein 2002; Du, Liu & Wang 2004; Vlahovska &
Gracia 2007; Agrawal & Steigmann 2009; Stone 2010; Agrawal & Steigmann 2011;
Rahimi, DeSimone & Arroyo 2013; Maitra et al. 2014; Narsimhan, Spann & Shaqfeh
2015; Stone & Masoud 2015; Sabass & Stone 2016; Vlahovska 2016; Al-Izzi, Sens &
Turner 2020; Fonda et al. 2020; Lin et al. 2021; Yu & Košmrlj 2023; Al-Izzi, Turner &
Sens 2024; Dharmavaram & Hanna 2024; Faizi, Granek & Vlahovska 2024; Reboucas
et al. 2024; Venkatesh & Narsimhan 2024; Venkatesh, Bhargava & Narsimhan 2025).
However, the general, coupled nonlinear equations governing the in-plane and out-of-plane
dynamics of a single-component membrane were not obtained until 2007 (Hu et al. 2007).
These governing equations were subsequently obtained via other techniques (Arroyo &
DeSimone 2009; Rangamani et al. 2012; Sahu, Sauer & Mandadapu 2017), and extended
to describe the dynamics of multicomponent phase separation and chemical reactions with
proteins in the surrounding fluid (Sahu et al. 2017). For our detailed perspective on the
development of lipid membrane theories, see Chapter IV of Sahu (2022).

The equations governing membrane dynamics are highly nonlinear partial differential
equations written on a surface that is itself arbitrarily curved and deforming over time.
One cannot in general analytically solve for the time evolution of lipid flows and
membrane shape changes, which are intricately coupled. However, it is also difficult
to solve the full membrane equations numerically, as standard solution methods from
fluid and solid mechanics struggle to capture the membrane’s in-plane fluidity and out-
of-plane elasticity. Many numerical studies accordingly investigated specific aspects of
membrane behaviour. For example, several works captured the hydrodynamics of lipid
flows on vesicles with a prescribed geometry, including the effects of the surrounding
fluid as well as embedded proteins and other inclusions (Oppenheimer & Diamant 2010,
2011; Sigurdsson & Atzberger 2016; Gross & Atzberger 2018; Samanta & Oppenheimer
2021). These developments were recently extended with fluctuating hydrodynamics to
incorporate phase separation and the discrete motion of proteins (Rower, Padidar &
Atzberger 2022; Tran, Blanpied & Atzberger 2022). Orthogonal efforts described elastic
membrane deformations either (i) in the limit of no in-plane viscosity (Feng & Klug
2006; Barrett et al. 2008a,b; Dziuk 2008; Ma & Klug 2008; Bonito, Nochetto & Pauletti
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2010; Elliott & Stinner 2010; Mercker et al. 2013), possibly with the dynamics of the
surrounding fluid (Narsimhan et al. 2015), or (ii) with the in-plane fluidity replaced by
viscoelasticity (Rangarajan & Gao 2015; Zhu, Lee & Rangamani 2022). In both cases,
the dynamic coupling between in-plane viscous flows and shape changes is not reflected
(Sahu et al. 2020a). Still other works incorporated all of the aforementioned membrane
complexities, but restricted their investigations to specific geometries (Rangamani et al.
2012, 2014; Walani, Torres & Agrawal 2015; Hassinger et al. 2017) – for which the
membrane equations are simplified.

We reiterate that many challenges arise when developing a general numerical method
that truly captures in-plane viscous lipid flows, out-of-plane membrane bending and their
coupling – all on an arbitrarily curved and deforming surface. Several studies (Barrett,
Garcke & Nürnberg 2015; Rodrigues et al. 2015; Sauer et al. 2017; Omar et al. 2020)
took a Lagrangian approach, where the surface is discretised and the resulting mesh is
convected with the physical, material velocity. Lagrangian implementations successfully
capture membrane dynamics, but struggle to resolve in-plane flows as they lead to highly
distorted elements. A remeshing procedure was used to maintain element aspect ratios,
though it led to unphysical oscillations in the membrane curvature (Rodrigues et al. 2015).
An alternative approach is for the mesh to only move normal to the surface, so that it
is unaffected by in-plane flows. The mesh motion is then out-of-plane Lagrangian, as it
tracks the material surface, and in-plane Eulerian. Such an approach, which we refer to as
Eulerian, was implemented in Reuther, Nitschke & Voigt (2020) – though the membrane
geometry was updated explicitly in a piecemeal manner. Given the importance of geometry
to membrane dynamics (Sahu et al. 2020a), numerical methods relying on explicit mesh
updates could suffer from issues known to affect explicit algorithms in the study of fluids
(Zienkiewicz & Codina 1995; Zienkiewicz, Taylor & Zhu 2013). Moreover, even if a fully
implicit Eulerian mesh motion was implemented as in our prior work (Sahu et al. 2020b),
scenarios arise where the method will fail (Torres-Sánchez et al. 2019). We show one such
example in § 4.2.

Since neither Lagrangian nor Eulerian approaches can capture commonly observed
membrane behaviours, a more general mesh motion is required. The ALE theory
underlying a general mesh motion was independently derived by both others (Torres-
Sánchez et al. 2019) and ourselves (Sahu et al. 2020b). A new mesh motion was
implemented in Torres-Sánchez et al. (2019), in which the mesh moved only in the
direction normal to a known prior configuration of the membrane. In practice, such a
choice was again not sufficiently general and required remeshing steps, which introduced
errors in the numerical solution. Since the aforementioned approach resembles an Eulerian
mesh motion, we hypothesise that it may not work in certain situations – such as the tether
pulling scenario discussed in § 4.2. There is thus still a need for numerical implementations
of more general mesh motions, which can be specified by the user when solving for
membrane dynamics in a particular scenario.

The aforementioned limitations of numerical techniques motivate our development and
implementation of a fully implicit ALE finite element method for lipid membranes. Rather
than prescribing the mesh motion directly, we choose for the mesh velocity to satisfy a
set of partial differential equations as if the mesh were itself another material. We then
supply appropriate boundary conditions to the mesh velocity. In addition, the mesh and
membrane are constrained to coincide via a Lagrange multiplier – which is understood
as the mesh analogue of a normal force per unit area. The presence of a scalar Lagrange
multiplier coupled to vector velocities leads to a numerical instability reminiscent of that
identified by Ladyzhenskaya (1969), Babuška (1973) and Brezzi (1974), hereafter referred
to as the LBB condition. We suppress the instability with the method of Dohrmann &
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Figure 1. Surface geometry. A schematic of the mapping x = x(ζ α̌, t), at a single instant in time, between the
parametric domain Ω and the membrane patch P . The in-plane basis vectors aα̌ and unit normal vector n are
shown at a point x on the patch, as are the in-plane unit normal ν and unit tangent τ at a point xb at the patch
boundary ∂P .

Bochev (2004), where the Lagrange multiplier is projected onto a space of discontinuous,
piecewise linear functions.

The remainder of this paper is organised as follows. In § 2, we present the strong and
weak formulations of all equations governing the membrane and mesh. A summary of the
corresponding finite element formulation is provided in § 3; additional details can be found
in Appendix A. All numerical results from Lagrangian, Eulerian and ALE simulations are
presented in § 4. We close with conclusions and pathways for future work in § 5. Our
source code is provided in the Julia package MembraneAleFem.jl (Sahu 2024).

2. The governing equations: Strong and weak formulations
The membrane is treated as a single 2-D differentiable manifold embedded in the
Euclidean space R3, for which we implicitly assume no slip between the two bilayer
leaflets. In our ALE formulation the membrane surface is parametrised by coordinates
that need not follow material flows, as detailed in Sahu et al. (2020b). Accordingly, the
so-called mesh velocity vm resulting from the parametrisation will in general not equal the
membrane velocity v of material points. The dynamics of both the membrane and mesh
are detailed in what follows; many of the results were derived in our prior work (Sahu
et al. 2020b; Sahu 2022). The phospholipid bilayer is treated as an area-incompressible
material – for which the areal density is constant and the surface tension, λ, is a Lagrange
multiplier field to be solved for. Our goal is to determine the fundamental unknowns v, vm

and λ, as well as the membrane position x, over time.

2.1. Surface parametrisation, geometry and kinematics
We begin by reviewing the framework with which lipid membranes are described. Only the
most relevant features are presented here, as Sahu (2022) details our understanding of the
membrane geometry and kinematics, while Sahu et al. (2020b) provides the ALE theory.

Consider an arbitrarily curved and deforming membrane surface S , of which we
examine a patch P ⊂ S . At any time t , the surface position x is parametrised by two
coordinates: ζ 1̌ and ζ 2̌. Here, as in Sahu et al. (2020b), the ‘check’ accent ( ·̌ ) indicates
the parametrisation can be arbitrarily specified. From now on, Greek indices span the set
{1, 2}, such that x(ζ α̌, t) ∈R3 denotes the position of a point on the membrane surface.
As shown in figure 1, there is a mapping from the parametric domain Ω in the ζ 1̌–ζ 2̌ plane
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to the membrane patch P . Area integrals over the patch are thus evaluated as∫
P
(. . .) da =

∫
Ω

(. . .) JΩ dΩ, (2.1)

where JΩ is the Jacobian of the mapping. Here JΩ has dimensions of area and its functional
form is provided below. At any point x(ζ α̌, t), the vectors a

α̌
:= ∂x/∂ζ α̌ form a basis

of the tangent plane to the surface, which has unit normal n = (a1̌ × a2̌)/|a1̌ × a2̌|.
Covariant components of the metric and curvature tensors are respectively a

α̌β̌
:= aα̌ · a

β̌

and b
α̌β̌

:= n · x
,α̌β̌

= n · x;α̌β̌
. Here ( · ),α̌ := ∂( · )/∂ζ α̌ and ( · );α̌ are respectively the

partial and covariant derivatives with respect to ζ α̌ . The Jacobian JΩ appearing in (2.1) is
expressed as JΩ = √

det a
α̌β̌

. The mean curvature H is calculated as H = (1/2)aα̌β̌b
α̌β̌

,
where aα̌β̌ is the contravariant metric and is calculated as the matrix inverse of a

α̌β̌
. In

the present work, the Einstein summation convention is employed, in which repeated
raised and lowered indices are summed over. The Gaussian curvature K is computed
as K = det(b

α̌β̌
)/ det(a

α̌β̌
). Finally, at points xb on the patch boundary ∂P , additional

in-plane basis vectors are defined: ν = να̌ a
α̌

= να̌ aα̌ is the in-plane unit normal and
τ = τ α̌ a

α̌
= τα̌ aα̌ is the in-plane unit tangent (see figure 1). Line integrals over the patch

boundary are calculated as ∫
∂P

(. . .) ds =
∫

Γ

(. . .) JΓ dΓ , (2.2)

where s is the arc length parametrisation of ∂P and Γ := ∂Ω is the boundary of the
parametric domain. In (2.2), JΓ = [(τ 1̌)2 + (τ 2̌)2]−1/2 is the Jacobian of the mapping
from Γ to ∂P .

When solving for the membrane state at a particular time, we seek the surface tension,
material velocity and mesh velocity fields on the surface. To this end, it is useful to define
relevant function spaces over the parametric domain Ω . The space of square-integrable
functions, L2(Ω), is expressed as

L2(Ω) :=
{
u
(
ζ α̌
) : Ω →R such that

(∫
Ω
u2 dΩ

)1/2
< ∞

}
. (2.3)

The Sobolev space of order k, Hk(Ω), consists of functions that are square-integrable and
also have up to k partial derivatives that are square-integrable:

Hk(Ω) :=
{
u
(
ζ α̌
) : Ω →R such that u

,α̌β̌...γ̌︸ ︷︷ ︸
m derivatives

∈ L2(Ω) for 0 ≤m ≤ k
}
. (2.4)

From the definitions in (2.3) and (2.4), it is evident that H0(Ω) = L2(Ω). Moreover, since
the material and mesh velocities are elements of R3, we also define

Hk(Ω) :=
{

u
(
ζ α̌
) : Ω →R3 such that uj ∈ Hk(Ω) for j = 1, 2, 3

}
(2.5)

as the space of functions in which each Cartesian component is an element of Hk(Ω). In
(2.5) we denote uj := u · ej , where {ej } j=1,2,3 is the canonical Cartesian basis in R3.

We close with a discussion of membrane kinematics. The membrane velocity v =
dx/dt = ẋ is the material time derivative of the position, and is expanded in the {aα̌, n}
basis as v = vα̌aα̌ + vn. The mesh velocity, which is treated as a fundamental unknown
independent of the material velocity, is defined to be the rate of change of position when
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ζ α̌ is held constant – expressed as vm = (∂ x̌/∂t)|ζ α̌ . In order for the material and mesh
velocities to correspond to the same surface, kinematics require

vm · n = v · n (2.6)

such that the mesh motion is always out-of-plane Lagrangian (Sahu et al. 2020b).
Importantly, the in-plane material velocity components vα̌ and mesh velocity components
vα̌
m = vm · aα̌ need not coincide, such that within our ALE framework one can dictate how

the mesh evolves within the membrane surface. In this work, (2.6) is referred to as the
ALE kinematic constraint.

2.2. The balance of mass: Material incompressibility
As lipid membranes only stretch 2 %−3 % before tearing (Evans & Skalak 1980; Nichol &
Hutter 1996), we treat them as area-incompressible 2-D materials. The local form of
the balance of mass, also referred to as the continuity equation and incompressibility
constraint, is given by

aα̌(ζ γ̌ , t) · v,α̌(ζ γ̌ , t) = 0 for all ζ γ̌ ∈ Ω , t ∈ [0, tf ], (2.7)

where tf is the end of the time interval under consideration. For notational simplicity, the
functional dependence of all quantities will be suppressed, as will the domains of ζ γ̌ and t .
The incompressibility constraint aα̌ · v,α̌ = 0 is equivalently expressed as vα̌

;α̌ − 2vH = 0,

and is enforced by the Lagrange multiplier field λ= λ(ζ α̌, t) – which has dimension of
energy/area and acts as the membrane surface tension (Sahu 2022, Chapter V, § 6(a)–(c)).

The weak formulation of (2.7) is obtained by multiplying it with an arbitrary surface
tension variation δλ and integrating over the membrane area. The tension variation is
assumed to be square-integrable, for which the weak form of the continuity equation is
expressed as ∫

Ω

δλ
(
aα̌ · v,α̌

)
JΩ dΩ = 0 for all δλ ∈ L2(Ω) . (2.8)

Care must be taken when discretising (2.8) in the course of finite element analysis, as
one could violate the LBB condition (Ladyzhenskaya 1969; Babuška 1973; Brezzi 1974)
and observe spurious surface tension oscillations in the numerical solution. A variety
of techniques were developed to prevent such oscillations and numerically stabilise the
system (Malkus & Hughes 1978; Brezzi & Pitkäranta 1984; Zienkiewicz & Nakazawa
1984; Dortdivanlioglu et al. 2018). We choose to employ the method of Dohrmann &
Bochev (2004), as it is based on an underlying theory and is straightforward to implement
numerically (Zienkiewicz et al. 2013).

2.2.1. The Dohrmann–Bochev method: Numerical stabilisation
The Dohrmann–Bochev method prevents spurious surface tension oscillations by
projecting the surface tension onto a space of discontinuous, piecewise linear functions.
The function space, denoted L̆ , is defined in (3.7) following a discussion of the surface
discretisation. The L2 projection of a given surface tension field λ ∈ L2(Ω) onto L̆ is
denoted λ̆ and is defined through the relation (Dohrmann & Bochev 2004)∫

Ω

δλ̆
(
λ− λ̆) dΩ = 0 for all δλ̆ ∈ L̆. (2.9)
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In practice, the method of Dohrmann & Bochev (2004) is implemented by quadratically
penalising surface tension deviations from the space L̆ , for which the quantity

αDB

ζ

∫
Ω

(
δλ− δλ̆

)(
λ− λ̆) dΩ (2.10)

is subtracted from (2.8). Here, ζ is the 2-D intramembrane viscosity: a material property
with dimensions of energy × time/area. In addition, αDB is a user-chosen parameter with
dimensions of area, such that (2.8) and (2.10) have the same dimensions – though the
value of αDB is not observed to affect simulation results. The numerically stabilised weak
formulation of the incompressibility constraint is written as

Gλ = 0 for all δλ ∈ L2(Ω), (2.11)

where Gλ is the surface tension contribution to the direct Galerkin expression
(Zienkiewicz & Taylor 2014) given by

Gλ :=
∫

Ω

δλ
(
aα̌ · v,α̌

)
JΩ dΩ − αDB

ζ

∫
Ω

(
δλ− δλ̆

)(
λ− λ̆) dΩ. (2.12)

In (2.12), λ̆ and δλ̆ are understood to be the L2 projections of their respective counterparts
λ and δλ onto L̆ , according to (2.9).

2.3. The balance of linear momentum: Membrane dynamics
Consider a general, arbitrarily curved and deforming 2-D material for which inertial effects
are negligible. The local form of the balance of linear momentum for such a material is
given by

T α̌
;α̌ + f = 0, (2.13)

where T α̌ is the internal traction along a curve of constant ζ α̌ on the surface and f is the
net body force per unit area on the material by its surroundings. The balance of angular
momentum additionally requires that the stress vectors be expressed as (Sahu 2022)

T α̌ = σ α̌β̌ a
β̌

− (
M β̌α̌ n

)
;β̌ . (2.14)

Here, σ α̌β̌ contains the couple-free, in-plane stress components and M α̌β̌ contains the
couple-stress components. If the constitutive form of σ α̌β̌ and M α̌β̌ are known, then (2.13)
and (2.14) govern the dynamics of a general 2-D material.

In lipid bilayers, the constitutive relations for σ α̌β̌ and M α̌β̌ are well known, and
depend on three material parameters. The first is the intramembrane viscosity ζ , which
characterises the irreversibility of in-plane flows. The other parameters are the mean and
Gaussian bending moduli, denoted by kb and kg , which have dimensions of energy and
respectively penalise non-zero mean and Gaussian curvatures (Canham 1970; Helfrich
1973; Evans 1974). We previously determined the membrane stresses and couple stresses
within the framework of irreversible thermodynamics, and found that (Sahu 2022)

M α̌β̌ = kb H aα̌β̌ + kg
(
2Haα̌β̌ − bα̌β̌

)
(2.15)

and

σ α̌β̌ = kb
(
H2aα̌β̌ − 2H bα̌β̌

)− kg K aα̌β̌ + λ aα̌β̌ + πα̌β̌ , (2.16)
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where

πα̌β̌ = ζ v,μ̌ · (aα̌aμ̌β̌ + aβ̌ aμ̌α̌
)

(2.17)

are the in-plane viscous stress components. The couple stresses (2.15) involve only kb
and kg , and thus are purely elastic, while σ α̌β̌ contains bending, tensile and viscous
contributions (2.16).

The in-plane and out-of-plane equations governing lipid membrane dynamics are
obtained by substituting (2.14)–(2.17) into (2.13) and contracting the result with a

α̌
and

n – which yields (Sahu 2022)

ζ
(
Δsvα̌ + K vα̌ + 2v,α̌ H − 2v

,β̌
bβ̌

α̌
− 2vH,α̌

)
+ fα̌ + λ,α̌ = 0 (2.18)

and

f + 2λH + ζ
(

2bα̌β̌ v
α̌;β̌ − 8vH2 + 4vK

)
− kb

(
2H3 − 2H K + Δs H

)= 0. (2.19)

Equations (2.18) and (2.19) are respectively referred to as the in-plane and shape equations,
and were independently obtained via different approaches (Hu et al. 2007; Arroyo &
DeSimone 2009; Rangamani et al. 2012; Sahu et al. 2017). Here, the body force per unit
area f is decomposed as f = aα̌ fα̌ + f n, and the operator Δs acts on an arbitrary quantity
( · ) as Δs( · ) := aμ̌ν̌ ( · );μ̌ν̌ . Note that while the membrane bends elastically, the in-plane
viscosity ζ enters the shape equation (2.19) due to a coupling between in-plane stresses
and curvature (Sahu et al. 2020a). The surface tension λ and surface curvatures H and K
also enter both the in-plane and shape equations, leading to non-trivial couplings between
in-plane and out-of-plane dynamics.

2.3.1. The boundary conditions
One cannot determine a well-posed set of boundary conditions to (2.18) and (2.19) by
inspection. A series of systematic developments for elastic shells (Green & Naghdi 1968;
Steigmann 1998, 1999) underlie the formulation of the general lipid membrane boundary
conditions (Capovilla, Guven & Santiago 2002; Arroyo & DeSimone 2009; Rangamani
et al. 2012; Sahu et al. 2017; Sauer & Duong 2017). In what follows, we highlight possible
boundary conditions and provide their physical justification. Details of our own deriva-
tions, which reproduce earlier results, are provided in Chapter V, § 5(d) of Sahu (2022).

The in-plane equations governing lipid flows (2.18) are identical to those governing a
2-D Newtonian fluid (Scriven 1960). We thus expect the boundary conditions to be similar
to those of a fluid, in which one specifies either the velocity v or (for a surface) the force
per length F on the boundary. For general 2-D materials, the force per length on the patch
boundary is given by

F = T α̌ν
α̌

−
(
M α̌β̌ ν

α̌
τ
β̌

n
)
,μ̌

τ μ̌ , (2.20)

which – for the case of lipid membranes – has bending, tensile and viscous contributions
(recall ν and τ are boundary basis vectors; see figure 1). In our numerical implementation,
on each edge of the membrane patch we specify a component of either the velocity v or the
force per length F in each of the three Cartesian directions. We denote Γ

j
F and Γ

j
v as the

respective portions of the boundary where Fj := F · ej and v j := v · ej are specified. For
j ∈ {1, 2, 3}, the intersection Γ

j
v ∩ Γ

j
F =∅ and the closure of the union Γ

j
v ∪ Γ

j
F = Γ .

The boundary conditions are expressed as
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v j = v̄ j on Γ j
v and Fj = Fj on Γ

j
F , (2.21)

where v̄ j and Fj are known quantities that we prescribe.
The boundary conditions in (2.21) are necessary but not sufficient for a mathematically

well-posed scenario. To see why, note that the membrane bending energy gives rise
to the Δs H = aμ̌ν̌ H;μ̌ν̌ term in the shape equation (2.19). Since the mean curvature
contains two spatial derivatives of the surface position through the curvature components
b
α̌β̌

= n · x
,α̌β̌

, the Δs H term contains four derivatives of the surface position. Following
canonical developments in the theory of beam bending (Timoshenko 1921, 1922), we
expect to specify two conditions along the entire boundary: either the out-of-plane velocity
or force per length, as well as either the slope of the surface or the boundary moment

M := M α̌β̌ ν
α̌
ν
β̌
. (2.22)

Since the velocity and force boundary conditions are already contained in (2.21), we need
only specify one of the latter pair. More precisely, we partition the boundary into the
disjoint sets Γn and ΓM , with Γn ∩ ΓM =∅ and Γn ∪ ΓM = Γ , and prescribe

n · v,α̌ να̌ = v̄ν on Γn and M = M on ΓM , (2.23)

where v̄ν and M are prescribed quantities. With (2.20)–(2.23), we have a mathematically
well-posed set of boundary conditions for the governing equations.

2.3.2. The weak formulation
The weak formulation of the balance of linear momentum is obtained by first contracting
(2.13) with an arbitrary velocity variation δv. At this point, we recognise the four spatial
derivatives contained in the shape equation (2.19) through the Δs H term will, in the
subsequent weak form, yield two spatial derivatives of both the velocity variation and
the surface position. Since v and x are assumed to lie in the same space of functions,
both are elements of H2(Ω) – for which higher-order basis functions, with continuous
first derivatives, are required in the numerical implementation. In accordance with the
boundary conditions in (2.21) and (2.23), the space of admissible material velocity
variations V0 is expressed as

V0 :=
{

u
(
ζ α̌
) : Ω →R3 such that u ∈ H2(Ω), uj

∣∣
Γ

j
v

= 0,
(
n · u,α̌ να̌

)∣∣
Γn

= 0
}
(2.24)

for j ∈ {1, 2, 3}. We integrate the result of the contraction over the membrane area, and
substitute the general form of the stress vectors (2.14) to obtain∫

Ω

δv ·
[
σ α̌β̌ a

β̌
− (

M β̌α̌ n
)
;β̌
]
;α JΩ dΩ +

∫
Ω

δv · f JΩ dΩ = 0 for all δv ∈V0.

(2.25)
Starting with (2.25), a series of algebraic manipulations are required to determine the
weak form of the linear momentum balance. The calculations rely on developments by
Green & Naghdi (1968) and Steigmann (1998), and can be found in Sauer et al. (2017),
Sauer & Duong (2017). Following the notation and development of our prior efforts (Sahu
2022, Chapter V, § 5(d)), the weak formulation of the balance of linear momentum is
expressed as

Gv = 0 for all δv ∈V0, (2.26)
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where

Gv :=
∫

Ω

1
2

(
δv,α̌ · a

β̌
+ δv

,β̌
· a

α̌

)
σ α̌β̌ JΩ dΩ +

∫
Ω

1
2

(
δv;α̌β̌

+ δv;β̌α̌

)
· n M α̌β̌ JΩ dΩ

−
∫

Ω

δv · f JΩ dΩ −
3∑
j=1

∫
Γ

j
F

δv j Fj JΓ dΓ −
∫

ΓM

δv,α̌ να̌ · n M JΓ dΓ.

(2.27)

Note that jump forces can arise at corners of the patch and enter (2.27). They are assumed
here to be zero. In (2.27), δv j := δv · ej is the j th Cartesian component of the arbitrary
velocity variation. It is useful to recognise that (2.27) is general to any material whose
stress vectors can be expressed as in (2.14), with the corresponding boundary conditions
in (2.21) and (2.23).

2.4. The dynamics of the mesh
In our ALE formulation, the material velocity v and the mesh velocity vm are independent
quantities. The evolution of the position x(ζ α̌, t) of the membrane surface is dictated by
the mesh velocity via the relations

vm
(
ζ α̌, t

)= ∂

∂ t

(
x
(
ζ α̌, t

))
(2.28)

and

x
(
ζ α̌, t

)= x
(
ζ α̌, 0

)+
∫ t

0
vm
(
ζ α̌, t ′

)
dt ′, (2.29)

which both apply over all parametric coordinates ζ α̌ ∈ Ω and for all times t ∈ [0, tf ]
under consideration (see Sahu et al. (2020b, § 2) for additional details). As we previously
recognised x ∈ H2(Ω), (2.28) and (2.29) reveal vm ∈ H2(Ω) as well. In what follows, we
discuss three mesh velocity schemes of increasing complexity, all of which are consistent
with the kinematic constraint (2.6) such that the mesh and material always overlap.
We begin with Lagrangian and Eulerian schemes, which were previously employed by
both ourselves and others, and are known to suffer from limitations (Barrett et al. 2015;
Rodrigues et al. 2015; Sauer et al. 2017; Omar et al. 2020; Reuther et al. 2020; Sahu et al.
2020b). We then discuss a new class of ALE schemes in which the mesh velocity itself
satisfies dynamical equations similar to those that govern the material velocity.

2.5. The Lagrangian mesh motion
We begin with the simplest membrane motion, namely a Lagrangian scheme. In this case,
the mesh velocity is prescribed to be equal to the material velocity:

vm = v. (2.30)

In our numerical implementation, mesh velocity degrees of freedom are mapped to their
material velocity counterparts such that (2.30) is satisfied identically over the entire
surface. The direct Galerkin expression in the case of a Lagrangian mesh motion is then
given by

GL := Gλ + Gv = 0 for all δλ ∈ L2(Ω), δv ∈V0. (2.31)
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In (2.31) the superscript ‘L’ denotes a Lagrangian scheme, where vm = v throughout and
mesh positions are updated according to (2.29). In addition, Gλ and Gv are respectively
provided in (2.12) and (2.27).

2.6. The Eulerian mesh motion
The second scheme we implement is in-plane Eulerian, with vm · a

α̌
= 0, and out-of-

plane Lagrangian, for which vm · n = v · n. The in-plane and out-of-plane conditions are
expressed as the single equation

vm = (n ⊗ n)v , (2.32)

where ‘⊗’ denotes the dyadic product. As there are no spatial derivatives in (2.32), no
mesh velocity boundary conditions are to be prescribed for an Eulerian mesh motion.

The weak form of (2.32) is obtained by contracting it with an arbitrary mesh velocity
variation δvm ∈ H2(Ω), integrating over the membrane surface, and multiplying the result
by a user-specified constant αE

m . The weak formulation of the Eulerian mesh velocity
equation is then given by (Sahu et al. 2020b)

GE
m := αE

m

∫
Ω

δvm · [ vm − (n ⊗ n)v
]
JΩ dΩ = 0 for all δvm ∈ H2(Ω). (2.33)

In (2.33) the superscript ‘E’ signifies the scheme is Eulerian, and the constant αE
m has

dimensions of energy × time/length4 such that GE
m has the same dimensions as Gλ and Gv .

In this study, αE
m = ζ/�2 for all results presented, as varying αE

m was not observed to affect
membrane behaviour (� is a chosen characteristic length). The direct Galerkin expression
for a scenario with an Eulerian mesh motion is expressed as

GE := Gλ + Gv + GE
m = 0 for all δλ ∈ L2(Ω), δv ∈V0, δvm ∈ H2(Ω). (2.34)

2.7. The ALE mesh motion
The final scheme we consider is neither in-plane Lagrangian nor in-plane Eulerian.
Instead, the mesh is modelled as a separate 2-D material with its own constitutive relations
and associated dynamical equations. The mesh analogues of the stress vectors are then
expressed as (cf. (2.14))

T α̌
m = σ α̌β̌

m a
β̌

− (
M β̌α̌

m n
)
;β̌ , (2.35)

where σ
α̌β̌
m and M α̌β̌

m are the mesh analogues of σ α̌β̌ and M α̌β̌ . Here σ
α̌β̌
m and M α̌β̌

m
can be specified arbitrarily without altering the dynamics of the membrane, and so the
mesh dynamics can be that of an elastic, viscous or viscoelastic material. When the mesh
velocity vm is determined by solving an arbitrary set of governing equations, it will no
longer satisfy the kinematic constraint (2.6) across the membrane surface. We enforce
(2.6) with an additional Lagrange multiplier field, which physically acts on the mesh as an
external body force per unit area in the normal direction – hereafter referred to as the mesh
pressure pm . Following the developments of § 2.3, the dynamical equation governing the
mesh dynamics is given by

T α̌
m ; α̌ + pm n = 0. (2.36)

Upon specification of appropriate boundary conditions, (2.6) and the three components of
(2.36) uniquely determine the mesh pressure pm and the three components of the mesh
velocity vm . The ability to specify mesh boundary conditions can prevent undesirable
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mesh distortions, and is an advantage of our ALE method. Two choices of the mesh

motion, for which σ
α̌β̌
m and M α̌β̌

m are prescribed, are discussed subsequently. In the first
case, the mesh is area-compressible and purely viscous; in the second case it also resists
bending. In both cases, the simplest boundary conditions for the mesh velocity are chosen.
The investigation of more complex boundary conditions, as well as more involved mesh
behaviours, is left to a future study.

2.7.1. The weak formulation of the kinematic constraint
The mesh pressure is an unknown Lagrange multiplier field enforcing the ALE kinematic
constraint in (2.6). The weak form of (2.6) is obtained by multiplying it with an arbitrary
variation δpm ∈ L2(Ω), and integrating the result over the membrane surface to obtain∫

Ω

δpm n · (vm − v
)
JΩ dΩ = 0 for all δpm ∈ L2(Ω). (2.37)

Equation (2.37) bears some resemblance to (2.8), which was obtained from the
incompressibility constraint. In both equations, the variation of a scalar Lagrange
multiplier interacts with a vector velocity. Moreover, when (2.37) is discretised, our
numerical simulations exhibit an instability reminiscent of the checkerboarding that arises
when the LBB condition is violated. We thus hypothesise that both numerical instabilities
are similar, and attempt to stabilise the mesh pressure with the Dohrmann–Bochev method.
Following the results of § 2.2.1, we express the weak formulation of the kinematic
constraint (2.6) as

Gp = 0 for all δpm ∈ L2(Ω), (2.38)

where the numerically stabilised mesh pressure contribution to the direct Galerkin
expression is given by (cf. (2.12), (2.37))

Gp := −
∫

Ω

δpm n · (vm − v
)
JΩ dΩ − αDB�2

ζ

∫
Ω

(
δpm − δ p̆m

)(
pm − p̆m

)
dΩ.

(2.39)
In (2.39), p̆m and δ p̆m are the L2 projections of pm and δpm onto the space L̆ , as defined
through (2.9). The factor of �2, for a characteristic length �, is required for dimensional
consistency. Our choice to employ the Dohrmann–Bochev method to stabilise pm does
not yet sit on a firm theoretical footing, and currently can only be justified with empirical
success. We hope to investigate the mathematical nature of the stabilisation of pm in a
future paper.

2.7.2. The case where the mesh dynamics is purely viscous
For the case of purely viscous mesh dynamics, quantities are denoted with a superscript
or subscript ‘v’. The scheme is referred to as ‘ALE-viscous’, with the shorthand ‘Av’ or
‘ALE-v’. Since the mesh velocity field is area-compressible, the mesh motion resists both
shearing and dilatation.

Strong formulation: we prescribe for the mesh analogue of the in-plane stresses and
couple stresses to be (cf. (2.15)–(2.17))

σ α̌β̌
m,v = πα̌β̌

m := ζm vm
,μ̌

·
(

aα̌aμ̌β̌ + aβ̌ aμ̌α̌
)

and M α̌β̌
m,v = 0, (2.40)

where ζm is a user-specified parameter that we refer to as the mesh viscosity. Importantly,
since the mesh velocity is area-compressible, our choice in (2.40) resists both shear
and dilatation of the mesh. By substituting (2.35) and (2.40) into (2.36), the dynamical
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equations governing the mesh are found to be (Sahu 2022, Chapter V, § 5(c))

ζm
(
Δsv

m
α̌

+ K vm
α̌

+ 2(vm),α̌ H − 2(vm)
,β̌
bβ̌

α̌
− 2vmH,α̌ + (

aγ̌ β̌ (vm
γ̌

);β̌ − 2vmH
)
;α̌
)

= 0

(2.41)

and

pm + ζm
(

2bα̌β̌ (vm
α̌

);β̌ − 8vmH2 + 4vmK
)

= 0, (2.42)

where vm = vm
α̌

aα̌ + vm n. The solution to (2.41) is independent of ζm , and the mesh
pressure in (2.42) will adjust so as to satisfy the kinematic constraint (2.6). The mesh
dynamics accordingly do not depend on the choice of ζm . In all numerical results
presented, we choose ζm = ζ for simplicity.

Boundary conditions: since the mesh velocity satisfies differential equations (see (2.41)
and (2.42)) rather than an algebraic equation (cf. (2.30), (2.32)), boundary conditions for
the mesh velocity are required. To this end, we introduce the mesh analogue of the force
per length on the boundary:

Fm
v = T α̌

m,v ν
α̌

= σ α̌β̌
m,v ν

α̌
a

β̌
. (2.43)

Recalling M α̌β̌
m,v = 0 according to (2.40), the purely viscous mesh dynamics cannot sustain

moments – as is the case for a fluid film (Sahu et al. 2020b). Consequently, neither slope
nor moment boundary conditions are required on the boundary, since the mesh analogue
of the moment Mm = 0 identically throughout. With this understanding, the parametric
boundary Γ is partitioned into the portions Γ

mj
v and Γ

mj
F , on which vmj := vm · ej and

Fm
j := Fm · ej are respectively specified. For simplicity in our numerical formulation,

the mesh is assumed to be either static or force-free on its entire boundary, for which
(cf. (2.21))

vmj = 0 on Γ mj
v and Fm

j = 0 on Γ
mj

F . (2.44)

Weak formulation: the weak formulation of the purely viscous ALE mesh behaviour is
obtained by drawing analogy to the developments in § 2.3.2. First, the space of arbitrary
mesh velocity variations is defined as

Vm
0,v :=

{
u
(
ζ α̌
) : Ω →R3 such that u ∈ H2(Ω), uj

∣∣
Γ

mj
v

= 0
}
. (2.45)

By contracting (2.36) with an arbitrary mesh velocity variation δvm ∈Vm
0,v and repeating

the steps of § 2.3.2, the weak formulation of the ALE-viscous mesh motion is found to be
(cf. (2.26) and (2.27))

GAv
m = 0 for all δvm ∈Vm

0,v, (2.46)

where

GAv
m :=

∫
Ω

1
2

(
δvm

,α̌
· a

β̌
+ δvm

,β̌
· a

α̌

)
σ α̌β̌
m,v JΩ. (2.47)

In (2.46) and (2.47), the superscript ‘Av’ refers to the choice of a purely viscous ALE mesh
motion. The direct Galerkin expression for this motion is then written as

GAv := Gλ + Gv + GAv
m + Gp = 0

for all δλ ∈ L2(Ω), δv ∈V0, δvm ∈Vm
0,v, δpm ∈ L2(Ω). (2.48)
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2.7.3. The case where the mesh dynamics is viscous and resist bending
We now consider the case where the mesh dynamics is viscous in response to in-plane
shears and area dilatations, and additionally resist bending. The mesh motion is referred to
as ‘ALE-viscous-bending’, with shorthand ‘Avb’ or ‘ALE-vb’. Corresponding quantities
are denoted with a subscript or superscript ‘vb’.

Strong formulation: we choose for the bending resistance of the mesh to arise in the
same manner as the membrane itself, with the viscous resistance identical to that of the
ALE-viscous scenario. To this end, we choose (cf. (2.15)– (2.17) and (2.40))

M α̌β̌
m,vb = kmb Haα̌β̌ + kmg

(
2Haα̌β̌ − bα̌β̌

)
(2.49)

and

σ
α̌β̌
m,vb = kmb

(
H2aα̌β̌ − 2H bα̌β̌

)
− kmg K aα̌β̌ + πα̌β̌

m , (2.50)

where π
α̌β̌
m is defined in (2.40). In (2.49) and (2.50), kmb and kmg are user-specified

parameters; we always choose kmb = kb and kmg = kg for simplicity. It is well known
that bending terms from the Helfrich free energy do not enter the in-plane equations
(Rangamani et al. 2012), and so the in-plane dynamical mesh equations in the ALE-vb
case are given by (2.41). The out-of-plane dynamical equation is expressed as (cf. (2.19)
and (2.42))

pm + ζm
(

2bα̌β̌ v
α̌;β̌ − 8vH2 + 4vK

)
− kmb

(
2H3 − 2H K + Δs H

)
= 0. (2.51)

Contrary to the ALE-v scenario (2.42), here the relative magnitude of ζm and kmb do affect
the resultant mesh pressure pm . Investigating the relationship between pm , ζm and kmb –
as well as the ensuing mesh dynamics – is left to a later study.

Boundary conditions: we once again introduce the mesh analogue of the force per length
on the boundary, which in this case is written as (cf. (2.20) and (2.43))

Fm
vb = T α̌

m,vb ν
α̌

−
(
M α̌β̌

m,vb ν
α̌
τ
β̌

n
)
,μ̌

τ μ̌. (2.52)

In principle, one could specify boundary forces for the mesh dynamics. However, as in the
ALE-viscous case, we choose simple boundary conditions where the mesh is either static
or force-free on the entire boundary (2.44). In addition, since the mesh couple stresses
are non-zero, either slope or moment boundary conditions are required for vm – where
the analogue of the boundary moment is calculated as Mm = M α̌μ̌

m ν
α̌
ν
μ̌

(cf. (2.22)). At
present, we take the simpler approach and specify zero-slope conditions on the entire
boundary (cf. (2.23)):

n · vm
,α̌

να̌ = 0 on Γ. (2.53)

The ability to specify the slope of the mesh at a boundary will be relevant in the tether
pulling scenario of § 4.2.

Weak formulation: at this point, it is straightforward to write the weak formulation of
the mesh dynamics. The space of arbitrary mesh variations is given by

Vm
0,vb :=

{
u
(
ζ α̌
) : Ω →R3 such that u ∈ H2(Ω), uj

∣∣
Γ

mj
v

= 0,
(
n · u,α̌ να̌

)∣∣
Γ

= 0
}
.

(2.54)
The weak formulation is then expressed as

GAvb
m = 0 for all δvm ∈Vm

0,vb, (2.55)
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where we define (cf. (2.27))

GAvb
m :=

∫
Ω

1
2

(
δvm

,α̌
· a

β̌
+ δvm

,β̌
· a

α̌

)
σ

α̌β̌
m,vb JΩ dΩ

+
∫

Ω

1
2

(
δvm;α̌β̌

+ δvm;β̌α̌

)
· n M α̌β̌

m,vb JΩ dΩ −
∫

Ω

(
δvm · pm n

)
JΩ dΩ. (2.56)

The direct Galerkin expression for the scenario with the ALE-vb mesh motion is written as

GAvb := Gλ + Gv + GAvb
m + Gp = 0

for all δλ ∈ L2(Ω), δv ∈V0, δvm ∈Vm
0,vb, δpm ∈ L2(Ω). (2.57)

3. The finite element formulation
With the Lagrangian, Eulerian and ALE weak formulations, our goal is to solve for the
state of the membrane over time. We seek to determine (i) the membrane velocity v, (ii)
the mesh velocity vm , and (iii) the membrane tension λ – for all parametric points ζ α̌ ∈ Ω

and times t ∈ [0, tf ]. In doing so, the surface position is obtained from the mesh velocity
through (2.29). We cannot solve for the highly nonlinear membrane behaviour exactly, and
turn to the finite element method to numerically calculate the approximate solutions vh ,
vmh and λh . An overview of our solution method is presented in what follows. Further
specifics can be found in Appendix A and in the MembraneAleFem.jl documentation
(Sahu 2024).

3.1. The surface discretisation and space of solutions
Let us begin by assuming there is a discretisation Th of the parametric domain Ω into nel
(number of elements) non-overlapping finite elements Ωe of characteristic length h:

Th := {
Ω1, Ω2, . . . , Ωnel}. (3.1)

Our task is to choose the set of basis functions over each element Ωe ∈ Th – denoted
{Ne

k (ζ
α̌)}, where the index k ranges from 1 to nen (number of elemental nodes) – such that

the resultant solution spaces are consistent with their infinite-dimensional counterparts.
A complexity arises because mesh and membrane velocities belong to the space H2(Ω).
Accordingly, vh and vmh are required to be continuous and have continuous first derivatives
across elements. We satisfy the continuity criteria with a so-called tensor product of
quadratic B-spline basis functions in each of the ζ 1̌ and ζ 2̌ directions (Piegl & Tiller
1997; Cottrell, Hughes & Bazilevs 2009). For our purposes, the parametric domain Ω is
partitioned into a rectangular grid of finite elements, though more advanced discretisations
are now established (Toshniwal, Speleers & Hughes 2017; Wei et al. 2018; Paul et al. 2020;
Koh, Toshniwal & Cirak 2022). The resultant scalar and vector finite-dimensional spaces
Uh and Uh are respectively given by

Uh :=
{
u
(
ζ α̌
) : Ω →R such that u ∈C1(Ω) ∩ H2(Ω), u

∣∣
Ωe ∈Q2(Ω

e) for all Ωe ∈ Th
}

(3.2)
and

Uh :=
{

u
(
ζ α̌
) : Ω →R3 such that u j ∈ Uh

}
, (3.3)
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for which

vh ∈ Uh and vmh ∈ Uh (3.4)

by construction. In (3.2), Cm(Ω) denotes the space of scalar functions on Ω with
m continuous derivatives, and Qn(Ω

e) denotes the tensor-product space of nth-order
polynomials in the ζ 1̌ and ζ 2̌ directions on the finite element Ωe. The arbitrary variations
δvh and δvmh are also assumed to lie in Uh , and are respectively elements of the spaces

V0,h :=V0 ∩ Uh and Vm
0,h :=Vm

0 ∩ Uh . (3.5)

3.1.1. The membrane tension, mesh pressure and Dohrmann–Bochev projection
In general, the Lagrange multipliers λ and pm are elements of L2(Ω), and their finite-
dimensional counterparts λh and pmh need not be restricted to lie in Uh . However, for
convenience in the numerical implementation, we do in fact choose

λh ∈ Uh and pmh ∈ Uh . (3.6)

Since the same basis functions are used for the velocity and surface tension, the well-
known inf–sup condition is violated and the LBB instability arises (Ladyzhenskaya 1969;
Babuška 1973; Brezzi 1974). We apply the method of Dohrmann & Bochev (2004) to
stabilise unphysical oscillations in both the surface tension and mesh pressure. To do so,
λh and pmh are projected onto the space

L̆ :=
{
u
(
ζ α̌
) : Ω →R such that u

∣∣
Ωe ∈ P1(Ω

e) for all Ωe ∈ Th
}
, (3.7)

where Pn(Ω
e) denotes the space of polynomials of order n on Ωe. Since functions in

L̆ form a plane over each rectangular element Ωe, they are discontinuous across finite
elements.

3.2. The method of numerical solution
An overview of our numerical implementation is presented below. Additional details are
provided in Appendix A and the MembraneAleFem.jl package repository (Sahu 2024).

Once the parametric domain is discretised into finite elements, all membrane unknowns
are expressed as the sum of B-spline basis functions multiplied by membrane degrees of
freedom. The degrees of freedom are collected into a column vector and are generically
denoted [u]; they are also referred to as nodal values and their dependence on time is
implied. Variations of membrane unknowns are similarly decomposed, with degree-of-
freedom variations compatible with all boundary conditions collected into the column
vector [δu]. Since the direct Galerkin expression G is linear in the arbitrary variations, its
discretised counterpart Gh is expressed as

Gh
([δu], [u])= [δu]T[r([u])]= 0 for all [δu]. (3.8)

In (3.8) the residual vector [r] is defined to be

[
r([u])] := ∂Gh

([δu], [u])
∂ [δu] . (3.9)

Since the variations [δu] in (3.9) are arbitrary, the membrane dynamics at any time t ∈
[0, tf ] satisfy the nonlinear equation [

r([u])]= [0]. (3.10)
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Equation (3.10) is solved with the Newton–Raphson method, where a sequence of
progressively better estimates of the membrane state [u] is generated. Given the j th
estimate [u] j , the ( j + 1)th estimate is calculated according to

[u] j+1 = [u] j − [K ]−1
j

[
r([u] j )

]
, (3.11)

where the global tangent diffusion matrix at the j th iteration is defined as

[K ] j := ∂
[
r([u])]
∂ [u]

∣∣∣∣[u] j
. (3.12)

In prior studies (Sauer et al. 2017; Sahu et al. 2020b), the tangent diffusion matrix was
calculated analytically: an involved task. In the present work, however, [K ] is calculated by
numerically differentiating [r] with respect to each entry of [u]. In particular, the tangent
matrix (3.12) is calculated to machine precision by extending [r] and [u] into the complex
plane, following the general developments of Lyness & Moler (1967), Lyness (1968) (see
also, e.g. Tanaka et al. 2014). We note that when calculating derivatives with respect to
mesh velocity degrees of freedom, one must also perturb the surface positions, as the two
are related through (2.28) and (2.29).

4. The results of numerical simulations
We now present results from numerical simulations, where our finite element
implementation – including the various mesh motions discussed previously – was used
to simulate the dynamics of lipid membranes. We first validate our code against a standard
numerical benchmark, namely pure bending of a lipid membrane patch. We then simulate
the drawing of a tube from a membrane sheet: a process known to be important in various
biological phenomena, including dynamic rearrangement of the endoplasmic reticulum
(Terasaki et al. 1986, 2013) and tether formation by proteins travelling along microtubules
(Leduc et al. 2004). The well-known quasi-static tether pulling behaviour (Powers et al.
2002) is confirmed, and the effect of pull speed on pull force is quantified. We close by
laterally translating the tether across the membrane surface with our ALE scheme – a
result which cannot be obtained with established Lagrangian or Eulerian methods.

4.1. The pure bending of a flat patch
We begin with a simple scenario: starting with a flat membrane patch, boundary moments
are applied to the left and right edges to bend the membrane, as shown schematically
in figure 2(a). For a given applied moment, the equilibrium configuration is known
analytically to be a portion of a cylinder (Sauer et al. 2017; Sauer & Duong 2017). The
case of pure bending is thus used to validate our numerical implementation, including the
three mesh motions. For a given observable, errors in the numerical result uh with respect
to the known analytical solution u are calculated as

Eu
h :=

( ∫
Ω

∣∣u − uh
∣∣2 dΩ

)1/2

, (4.1)

where h denotes the characteristic length of a finite element in the parametric domain.

4.1.1. The problem set-up
In our code, the membrane patch is initially a square of side length � in the x–y plane. The
initial velocity and position are respectively given by
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–3 –2 –1 0 1 2 3

tM tf

z

xy

t

M (t)

(λ – λ0) · 104

—M— M—

M—M—

Mf
—

(a) Boundary conditions Time dependence Numerical result(b) (c)

Figure 2. Pure bending scenario. (a) Boundary moments are applied to an initially flat patch in the x–y
plane (top). The right edge is free to move in the x and y directions, but is constrained in the z direction.
At equilibrium, the membrane forms a portion of a cylinder (bottom). (b) Time dependence of the prescribed
boundary moment, according to (4.4). Errors are calculated at the final time tf , as indicated by the blue arrow
and circle. (c) Result of a numerical simulation on a 128 × 128 mesh. The calculated surface tension differs
from the analytical solution by less than three parts in 10 000, as shown by the colour bar.

v
(
ζ α̌, t ≤ 0

)= 0 and x
(
ζ α̌, t ≤ 0

)= x ex + y ey, (4.2)

where ζ α̌ ∈ Ω := [0, 1] × [0, 1] and the real-space coordinates x and y are parametrised as

x
(
ζ α̌, t ≤ 0

)= � ζ 1̌ and y
(
ζ α̌, t ≤ 0

)= � ζ 2̌. (4.3)

The magnitude of the applied moment, denoted M(t), is linearly ramped up over time
until t = tM – after which the boundary moment is held constant at the final value Mf (see
figure 2b):

M(t) =

⎧⎪⎨
⎪⎩

0, t ≤ 0,

(t/tM ) Mf , 0 < t < tM ,

Mf , t ≥ tM .

(4.4)

For times t > tM , the applied boundary moment is constant in time and the membrane is
bent into a portion of a cylinder, as shown in figure 2(c). The boundary forces and moments
of this stationary solution are calculated in Appendix B and summarised in table 1. Here,
rc and λ0 are respectively the cylinder radius and surface tension, the latter of which is
constant in the equilibrium configuration. We choose the Gaussian bending modulus kg =
−kb/2 such that M = 0 on the top and bottom edges, and no body force ( f = 0) such that
λ0 = kb/(4r 2

c ) and F = 0 on the left and right edges (see table 1). In this case, the cylinder
radius rc is related to the final boundary moment Mf according to

rc = kb
2Mf

. (4.5)

All of the boundary conditions prescribed in our numerical implementation for Lagrangian
and Eulerian mesh motions are provided in table 2. For the ALE simulations, we choose
the ALE-v mesh motion discussed in § 2.7.2. The first three rows of table 2 are then
repeated for the mesh counterparts v̄mj and Fm

j . Recall that Mm = 0 by construction, so
there is no mesh analogue of the moment boundary condition. As a result, the membrane
deforms only due to the physically applied moment M(t) – which is also the case for the
Lagrangian and Eulerian simulations.
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Top Bottom Left Right

M
kb
2rc

+ kg
rc

kb
2rc

+ kg
rc

kb
2rc

kb
2rc

F
[

kb
4r 2

c
+ λ0

]
ey −

[
kb

4r 2
c

+ λ0

]
ey

[
λ0 − kb

4r 2
c

]
eθ

[
kb

4r 2
c

− λ0

]
eθ

Table 1. Moments and forces on the boundary of a portion of a cylindrical membrane with radius rc, as shown
in figure 2 and calculated in Appendix B. The constant surface tension λ0 is set by the net body force per area
in the normal direction, f := f · n. In figure 2(a) the cylindrical basis vector eθ is tangent to the black curve
and points to the left.

Top Bottom Left Right

Fx = 0 Fx = 0 v̄x = 0 Fx = 0

v̄y = 0 v̄y = 0 v̄y = 0 Fy = 0

F z = 0 F z = 0 v̄z = 0 v̄z = 0

M = 0 M = 0 M = M(t) M = M(t)

Table 2. Boundary conditions prescribed in the numerical implementation. We choose to set kg = −kb/2 and
f = 0; the latter yields λ0 = kb/(4r 2

c ). The prescribed moment M(t) is given by (4.4). The first three rows are
repeated for v̄mj and Fm

j in the case of a viscous ALE mesh motion.

4.1.2. Non-dimensionalisation
For the case of pure bending, there are five membrane parameters: the bending modulus kb,
final bending moment Mf , ramp-up time tM , patch length � and intramembrane
viscosity ζ . These parameters all dimensionally consist of mass, length and time. The
pure bending scenario is thus completely described by two dimensionless quantities. The
first is the Föppl–von Kármán number, which compares surface tension to bending forces
(Sahu et al. 2020a). For a cylinder with f = 0, the membrane surface tension is constant:
λ= λ0 := kb/(4r 2

c ) = M2
f /kb, where (4.5) was substituted in the last equality (Evans &

Yeung 1994). The Föppl–von Kármán number Γ is then given by

Γ = λ0 �2

kb
=
(
Mf �

kb

)2

. (4.6)

The second dimensionless quantity is the Scriven–Love number SL, which captures
dynamical effects and in this scenario is set by tM (Sahu et al. 2020a). As the characteristic
velocity scale of membrane deformations is given by �/tM , the Scriven–Love number is
expressed as

SL = �2ζ

kb tM
, (4.7)

which can be understood as a ratio between the fundamental membrane time scale �2ζ/kb
and the ramp-up time tM . For the results presented, we run simulations with ζ = 1.0,
kb = 1.0 and � = 1.0. The Föppl–von Kármán and Scriven–Love numbers are then set by
choosing Mf and tM , respectively.
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10–1
Surface tension error Mean curvature error(a) (b)
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λ

1/h

1.5

1

1

1
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L

Figure 3. Errors in the (a) surface tension and (b) mean curvature at the final time tf , according to (4.1),
when the membrane patch is subjected to pure bending boundary conditions. The mesh consists of nel = 1/h2

parametric area elements, each of which is a square with side length h. Here, 1/h ranges from 21 to 27 in
powers of two. The labels ‘E’, ‘Av’ and ‘L’ refer to Eulerian, ALE-viscous and Lagrangian mesh motions. In
all cases, the convergence of the error confirms our numerical implementation is working as expected. Relevant
parameters are specified in § 4.1.3; we also choose ζ = 1.0, kb = 1.0 and � = 1.0.

4.1.3. Results
We simulate pure bending scenarios where Γ = 0.25 and SL = 0.5, for which Mf =
kb/(2�) and tM = 2�2ζ/kb (see (4.6) and (4.7)). Lagrangian, Eulerian and ALE-
viscous simulations are carried out on meshes ranging from 2 × 2 to 128 × 128. Other
relevant parameters are αDB = �2, αE

m = ζ/�2, �t = 0.1�2ζ/kb and tf = 4tM . The final
configuration from one such simulation, at time tf , is shown in figure 2(c). The L2 error
in surface tension and mean curvature, relative to the analytical solution and calculated
at time tf according to (4.1), is plotted as a function of mesh size in figure 3. Note that
the analytical solution is valid only for a static patch; we thus deform the membrane
slowly relative to the intrinsic time scale �2ζ/kb and calculate errors after it has relaxed
sufficiently. All three mesh motions converge towards the analytical solution upon mesh
refinement, indicating our numerical implementation is working as expected. We believe
the error from the Eulerian mesh motion is larger than that of the other two schemes
because boundary conditions are not prescribed for the mesh velocity. Instead, material
velocity boundary conditions are prescribed and weakly communicated to the mesh
velocity through (2.33); edges are also the location where errors are the largest (see
figure 2c).

4.2. The pulling of a tether from a flat sheet
When a single point on the membrane is displaced in the direction n normal to the
surface, a tent-like shape forms when deformations are small. As the point continues
to be displaced, the bilayer undergoes a non-trivial morphological transition and forms
a cylindrical tether (Evans & Yeung 1994; Dai & Sheetz 1995; Fygenson, Marko &
Libchaber 1997; Raucher & Sheetz 1999). Tethers are known to arise in biological settings,
including in the endoplasmic reticulum (Terasaki et al. 1986; Scott et al. 2024) and at the
junction between cells (Sowinski et al. 2008; Dubey et al. 2016; Imachi et al. 2020). In
addition, tethers form in in vitro settings with optical tweezers (Evans & Yeung 1994;
Cuvelier et al. 2005) and through the polymerisation of microtubules (Fygenson et al.
1997) – possibly with the use of molecular motors (Roux et al. 2002; Koster et al. 2003).
Tether pulling is also commonly used in assays to probe both static and dynamic membrane
properties, as one can measure the force Fp required to pull the tether (Cuvelier et al. 2005;
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Bdry Inner Pull Pin

LAG vz = 0 vz = 0 v = v p(t) vx = vy = 0
F̄‖ = λ0ν

EUL vz = 0 vz = 0 v = v p(t) vx = vy = 0
F̄‖ = λ0ν vmx = vmy = 0

ALE-vb vz = 0 vz = 0 v = v p(t) vx = vy = 0
vm = 0 vmz = 0 vm = v p(t) vmx = vmy = 0

F̄‖ = λ0ν

Table 3. Boundary conditions prescribed in our numerical implementation to pull a tether, with Lagrangian
(LAG), Eulerian (EUL) and ALE-viscous-bending (ALE-vb) mesh motions. Here, ‘Bdry’ refers to nodes on
the boundary, ‘Inner’ refers to inner nodes adjacent to the boundary, ‘Pull’ corresponds to nodes associated
with the central element Ωe

p and ‘Pin’ refers to nodes at the centre of each edge. The latter conditions are
required to prevent rigid body rotations and translations. The ‘Inner’ column enforces zero-slope boundary
conditions.

Koster et al. 2005; Shi et al. 2018). An analysis of membrane tether pulling is thus relevant
to both biological and in vitro scenarios. In what follows, we focus on the simplest case,
in which a tether is pulled from an initially flat sheet.

4.2.1. The problem set-up
In numerical simulations the membrane patch is initially a square of side length � in the
x–y plane, centred at the origin. We set vz = 0 on the entire patch boundary, and also pin
the centre node of each edge (v = 0) to remove rigid body rotations and translations. In
addition, zero-slope boundary conditions are enforced by constraining vz = 0 for nodes
adjacent to the boundary – hereafter referred to as inner boundary nodes. Finally, an in-
plane force/length F̄‖ = λ0 ν is applied on the boundary, where ν is the in-plane unit
normal at the patch boundary and λ0 is the static surface tension – which we choose. All
boundary conditions are summarised in table 3, including those for the Eulerian and ALE
schemes where vm is also a fundamental unknown.

The initial membrane state is given by

v
(
ζ α̌, t ≤ 0

)= 0 and λ
(
ζ α̌, t ≤ 0

)= λ0, (4.8)

where ζ α̌ ∈ Ω := [0, 1] × [0, 1]. The corresponding membrane position is expressed as

x
(
ζ α̌, t ≤ 0

)= x ex + y ey , (4.9)

with

x
(
ζ α̌, t ≤ 0

)= (
ζ 1̌ − 0.5

)
� and y

(
ζ α̌, t ≤ 0

)= (
ζ 2̌ − 0.5

)
�. (4.10)

At time t = 0, we seek to vertically displace the centre of the membrane patch, where
x = 0 and y = 0. However, as shown in Appendix C, there is no unique way to specify
the velocity at a single point given our use of B-spline basis functions, as they are not
interpolatory. Instead, we vertically displace the portion of the membrane corresponding
to the entire parametric element Ωe

p containing the point ζ p̌
α := (0.5, 0.5) at the centre of

the parametric domain:

v
(
ζ α̌, t ≥ 0

)= v p(t) for all ζ α̌ ∈ Ωe
p. (4.11)

In (4.11), v p(t) is a known function of time. It is given by vp ez , for constant vp, unless
otherwise specified. Following the derivations in Appendix C, (4.11) is enforced by setting
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all nodal velocity degrees of freedom associated with Ωe
p to v p(t). The resultant pull force

Fp(t) is calculated as the sum of the corresponding components of the residual vector.

4.2.2. Non-dimensionalisation
In the scenario under consideration, there are five membrane parameters: the bending
modulus kb, equilibrium surface tension λ0, 2-D intramembrane viscosity ζ , patch length
� and speed of tube drawing vp. We hope to include the hydrodynamics of the surrounding
fluid, including membrane permeability (Alkadri & Mandadapu 2024), and the effects
of cytoskeletal contacts (Shi et al. 2018) in a future effort – and better compare our
results with experiments (Cuvelier et al. 2005; Brochard-Wyart et al. 2006). Since the five
quantities dimensionally involve only mass, length and time, two dimensionless numbers
once again determine the evolution of the system. The Föppl–von Kármán number Γ is
given by (Sahu et al. 2020a)

Γ := λ0 �2

kb
, (4.12)

and can be interpreted in two ways given the morphological changes that occur when
pulling a tether. First, when the membrane is nearly planar and height deflections are
small, gradients in membrane shape occur over the length scale �; Γ then quantifies the
relative magnitude of tensile and bending forces. In our simulations, Γ −1 is small, and
consequently a boundary layer of characteristic width

√
kb/λ0 � � develops at the point

of application of the pull force (Powers et al. 2002). As the membrane is pulled further, a
tether grows from the boundary layer region. The tether is close in shape to a cylinder, and
the radius of a cylindrical membrane is well known to be (Zhong-can & Helfrich 1989)

rc :=
√

kb
4λ0

. (4.13)

Equation (4.13) can be obtained from energetic arguments alone, or equivalently, from a
balance of bending and tensile forces. Note that in situations where there is a pressure
jump across the membrane due to the surrounding fluid and f = f · n �= 0, (4.13) and
(4.17) are not valid. See the discussion in Chapter IX, § 1(a) of Sahu (2022). With (4.13),
the Föppl–von Kármán number (4.12) is understood as the ratio

Γ =
(

�

2rc

)2

. (4.14)

Equations (4.12)–(4.14) confirm that the Föppl–von Kármán number describes membrane
energetics, as only lengths and the parameters kb and λ0 – which respectively have
dimensions of energy and energy per area – are involved.

The second dimensionless quantity is the Scriven–Love number SL, which compares the
magnitude of viscous and bending forces in shaping the membrane (Sahu et al. 2020a). In
this scenario, we define the Scriven–Love number as

SL := rc ζ vp

kb
. (4.15)

We chose to include rc – rather than � – in (4.15) because we are primarily concerned
with the behaviour of the tether, rather than the entire patch. Upon substituting (4.13) into
(4.15), rearranging terms and recognising ζ/λ0 is the fundamental time scale of lipid flows
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Mesh motion # DOFs Wall clock time

LAG 17 401 271 mins
EUL 30 833 525 minsa

ALE-vb 34 282 636 mins

Table 4. Number of degrees of freedom (DOFs) and wall clock run time for the three different mesh motions,
corresponding to the results presented in figure 4. All computations were carried out on a single node of the
Perlmutter system at the National Energy Research Scientific Computing Center, with area element calculations
distributed across 32 cores.
aScaled to the total number of time steps, as the simulation failed.

(Sahu et al. 2020a), we find the Scriven–Love number can be equivalently expressed as

SL := vp

4rc (ζ/λ0)−1 , (4.16)

i.e. a ratio of the speed at which the tether is pulled to the natural velocity scale of lipid
flows in the tube (Sahu et al. 2020a). Thus, as SL tends to zero, we approach the quasi-
static limit.

In our source code, when running tether pulling simulations, we choose ζ = 1.0, kb =
1.0 and λ0 = 0.25. Our choice yields a tube radius rc = 1.0 according to (4.13). The Föppl–
von Kármán number Γ is altered by varying the patch size �, while the Scriven–Love
number SL is modified by changing the pull speed vp.

4.2.3. The comparison of different mesh motions
We begin by pulling a tether in a scenario with Föppl–von Kármán number Γ = 1024
and Scriven–Love number SL = 0.1. Given these dimensionless numbers, � = 64rc and
vp = 0.1kb/(ζ rc) according to (4.14) and (4.15). Snapshots from tether pulling simulations
with each mesh motion are shown in figure 4, with corresponding videos in the
MembraneAleFem.jl package repository (Sahu 2024). A zoomed-in view of the late-time
snapshots, with and without the underlying mesh, are shown in figure 5 to emphasise the
advantages of the ALE scheme. In addition, figure 6 shows how the z component of the
pull force, Fp,z :=Fp · ez , varies as a function of the vertical displacement z p. We note
that in the quasi-static limit (SL → 0), the steady-state pull force of a perfect cylinder is
given by Evans & Yeung (1994)

Feq := π kb
rc

= 2π
√
kbλ0. (4.17)

Note that some studies define κ := kb/2 to be the bending modulus, in which case Feq =
2π

√
2κλ0. Since a tether pulled from a flat patch deviates slightly from a cylinder (Powers

et al. 2002), (4.17) serves as an excellent approximation for Fp,z when SL = 0.
In what follows, we comment on the efficacy of the three mesh motions: Lagrangian

(LAG), Eulerian (EUL) and ALE-viscous-bending (ALE-vb). Note that additional
variables are used to solve for membrane behaviour in the latter two schemes: the
fundamental variables are v and λ (LAG); v, vm and λ (EUL); and v, vm , λ and pm

(ALE-vb). We present the number of degrees of freedom for each motion, as well as the
wall clock run time, in table 4. When appropriate, our results are compared to those of
prior theoretical and numerical developments.

Lagrangian scheme: we first consider results from simulations with a Lagrangian mesh
motion, as shown in the left column of figures 4 and 5 (see supplementary movie 1
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Figure 4. Snapshots from tether pulling simulations with a 65 × 65 mesh, in which three different mesh
motions are employed. The colour bar indicates the surface tension, in units of kb/r2

c , for all snapshots. Times
are measured in units of ζr2

c /kb. (Left) Lagrangian simulations (LAG) successfully generate a tether. The
morphological shape change from a tent to a tube occurs around time t = 120. Since the membrane is area
incompressible, the patch boundary must be pulled inwards to accommodate the tether surface area. (Centre)
The Eulerian mesh motion (EUL) is not able to form a tube. Rather, the tent morphology persists and bulges
outward until the method fails around time t = 143. The material velocity degrees of freedom of the central
element are constrained to move upwards; no such constraint is placed on the mesh velocity degrees of freedom.
(Right) An ALE mesh motion that is viscous and resists bending (ALE-vb) successfully forms a tether. Both
material and mesh velocities of the central element are constrained to move upwards. Since the mesh is area
compressible, the patch boundary can be constrained to remain stationary as the tether develops. For all three
mesh motions, �t = 0.5, SL = 0.1 and Γ = 1024, for which � = 64 rc and vp = 0.1 kb/(ζrc) according to (4.14)
and (4.15). See also supplementary movies 1–3.

available at https://doi.org/10.1017/jfm.2025.10553). A tent-like structure develops and
grows until the vertical displacement z p := vp t ≈ 8rc, for which t ≈ 80 ζ r 2

c /kb. Around
this point, the linear relationship between Fp,z and z p breaks down, as shown in figure 6.
The membrane undergoes a morphological transition between t ≈ 80 ζ r 2

c /kb and t ≈
120 ζ r 2

c /kb, during which Fp,z reaches its largest value. After the shape transition, a tether
continues to be drawn at an approximately constant force, which we refer to as the steady-
state force Fss (see figure 6). However, a pronounced area of low surface tension develops
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0.45

ALE-vbLAG

0.35

0.25

0.15

λ

Figure 5. Zoomed-in views of the t = 240 ζr2
c /kb snapshots from figure 4, with the underlying mesh shown

(top) and hidden (bottom). In the Lagrangian simulations (left), the mesh is drawn into the tube along with
the lipids due to the areal incompressibility of the membrane. Mesh elements close to the diagonal of the
square patch, where y = ±x , become highly distorted – which leads to an artificially low surface tension in the
transition region between the tether and surrounding membrane. Numerical artefacts are visible in the striation
of the tension. The ALE-viscous-bending result (right), in contrast, shows a less distorted mesh because the
choice of mesh constitution resists both shear and dilatation. No surface tension artefacts are visible, and a
smooth tension gradient is observed from the flat patch into the tether.

4

3

2

1

5 10

zp/rc

F p
, 
z/

(k
b/

r c
) Feq

15

EUL

ALE-vb

LAG

200

1

π/ln(Γ/2)

Figure 6. The z component of the pull force (Fp,z) as a function of the z displacement. The dashed cyan line
is the result from the linear theory, as presented in (4.20). The Eulerian simulation (blue circles, dotted line) is
unable to form a tether, and is unphysical. The Lagrangian (red triangles, dashed line) and ALE (black squares,
solid line) simulations capture the tent-to-tube transition, after which the Lagrangian steady-state pull force
Fss is slightly larger. Both overshoot the equilibrium pull force Feq (4.17) due to dynamical effects from tether
pulling (see § 4.2.4). Numerical parameters are those specified in figure 4.

in the region where the tether meets the flat patch (see figures 4 and 5). We comment on
the unphysical nature of this development following a presentation of our ALE results.

The majority of our findings from Lagrangian tether pulling simulations, as well
as the Lagrangian implementation itself, are not new. Powers et al. (2002) provided
a detailed account of the axisymmetric, quasi-static membrane shape in response to
vertical displacements, and along with Derényi et al. (2002) numerically calculated the
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force versus displacement curve in the quasi-static limit. More recently, rate effects were
included in axisymmetric simulations that focused primarily on the slip between two
monolayer leaflets (Rahimi & Arroyo 2012) – an effect not considered in the present
work. General non-axisymmetric Lagrangian formulations were developed since then. The
implementation in Rodrigues et al. (2015) included rate effects when pulling a tether,
but the force was not provided as a function of displacement and it is unclear if the
membrane underwent the morphological transition from a tent to a tube in simulations.
In contrast, Sauer et al. (2017) pulled a tether from the centre of an initially axisymmetric
mesh and illustrated the tent-to-tube transition. While this implementation seems to be
capable of capturing rate effects, the reported tether pulling results employed a numerical
stabilisation scheme that did not capture the coupling between in-plane lipid flows and out-
of-plane forces. Thus, to the best of our knowledge, we present the first non-axisymmetric
Lagrangian simulation capturing the dynamics of a tether pulled from a membrane patch –
though we do not consider the results to be novel, as Rodrigues et al. (2015) and Sauer et al.
(2017) may have been able to do the same.

Eulerian scheme: let us next examine results from an Eulerian mesh motion. As shown
in supplementary movie 2 and the centre column of figure 4, the numerical implementation
fails to form a tether. In addition, unphysical gradients develop in the surface tension, and
the code fails at time t = 143 ζ r 2

c /kb. In what follows, we discuss why such a failure is to
be expected, as a tether cannot form when the mesh motion is Eulerian.

We begin by introducing J and Jm as the relative area dilatations of the membrane and
mesh, respectively. These dilatations are related to the corresponding flow fields according
to (Sahu 2022, Chapter V, § 1(c))

J̇

J
= vα̌

;α̌ − 2vH and
J̇ m

Jm
= (

vα̌
m

)
; α̌

− 2vmH. (4.18)

Since the membrane is incompressible, J̇/J = 0 and vα̌
;α̌ = 2vH . To understand how the

mesh dilates or compresses, we recognise that vm = v and vα̌
m = 0 according to (2.32). We

thus find that

J̇ m

Jm
= −2vH �= 0. (4.19)

At this point, we make three observations regarding the geometry and dynamics of the
initial tent formation: (i) v ≥ 0 everywhere, (ii) H < 0 in a central region where the surface
is concave down, and (iii) H ≥ 0 elsewhere. Accordingly, J̇ m/Jm > 0 in the centre of the
tent, and the mesh continuously dilates. In this manner, the mesh expands laterally and
under-resolves the region where the morphological transition would occur.

Mesh dilatation at the patch centre, where ζ 1̌ = 0.5 and ζ 2̌ = 0.5 (see (4.10)), is
quantified in figure 7. Here, the relative area change of the mesh Jm is plotted as a function
of the membrane displacement z p. The dilatation by two orders of magnitude suggests
an Eulerian simulation with a similar increase in the number of elements. Such a patch,
even after the large dilatation, may be sufficiently resolved to undergo the morphological
transition to a tube. However, even if a tether was formed, it likely could not be extended
with an Eulerian mesh motion: lipid flows are primarily in-plane during tether elongation,
so the Eulerian mesh would remain stationary and the tether would be poorly resolved. We
thus believe the inability to pull a tether is a general failure of Eulerian methods, including
those implemented previously (Reuther et al. 2020; Sahu et al. 2020b ). Moreover, since
the ALE implementation of Torres-Sánchez et al. (2019) employed a mesh motion that
was close to Eulerian, we are unsure if it would be able to successfully pull a tether.
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Figure 7. Mesh dilatation of the Eulerian simulation shown in figure 4. (a) The relative area change at the
patch centre, Jm , is plotted as a function of the displacement z p . The dashed vertical line is the displacement at
which a tent is expected to transition to a tether, according to Lagrangian and ALE data in figure 6. (Inset) At
small displacements, simulation data agrees with an approximate solution to (4.19). Here v = ż p; if the mean
curvature is linear in z p then H ∼ −z p/r

2
c and integrating (4.19) yields ln Jm ∼ (z p/rc)

2. The number 16 in
the analytical expression is a fitting parameter. (b) The same data in a log–log plot suggests a power-law growth
of the dilatation at large displacements, prior to the expected morphological transition (dotted vertical line) –
though the data does not span even a single decade.

ALE scheme: we close by discussing the results of our ALE mesh motion. As shown in
figures 4–6 and supplementary movie 3, a tether was successfully pulled with the ALE-vb
scheme, and the surface tension in the region where the tether meets the flat patch was
approximately constant. This latter point is quantified by considering the range of surface
tension values at time t = 240 ζ r 2

c /kb. In the ALE simulation, the lowest (dimensionless)
value of the surface tension is 0.249 – approximately equal to the magnitude of the in-plane
force per length |F̄‖| = λ0 = 0.25 maintained on the boundary. Larger tension values, in
this case up to 0.345, arise in the tether to draw in lipids during the dynamic process of
pulling. In contrast, the minimum value of the tension in Lagrangian simulations is 0.191:
well below |F̄‖| and also less than the larger values (up to 0.446) attained on the tether.
Since lipids flow from regions of low to high tension, there does not seem to be a smooth
flow of lipids from the flat patch into the tether. We thus find the ALE-viscous-bending
mesh motion to be superior to its Lagrangian counterpart, and report only ALE-vb results
for the remainder of our tether pulling analysis.

It is important to note that while the ALE-vb scheme successfully pulls a tether, the
purely viscous ALE mesh motion – employed in § 4.1 – does not: as the centre of the patch
is translated upwards, the tether tapers to a point. We believe an angular shape arises in
the ALE-v simulation because of incompatible boundary conditions for the material and
mesh. More specifically, since all nodes over a single element are translated upwards, a
zero-slope condition is implicitly prescribed at the element boundary. Both the membrane
and ALE-vb mesh can sustain such a requirement due to their inherent bending stiffness.
In contrast, the ALE-v mesh has no bending rigidity and so cannot maintain zero slope
on the element boundary. The tether resulting from the ALE-v scheme is consequently
unphysical.

4.2.4. The geometry and dynamics of tether pulling
In comparing different mesh motions in § 4.2.3, all simulations were carried out at a single
choice of Γ and SL. We now investigate the effects of altering the patch size relative to the
tether radius, as well as changing the speed of tether pulling – which respectively modify
the Föppl–von Kármán and Scriven–Love numbers. We confirm that Γ dictates the initial
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slope of the force versus displacement curve, as previously observed (Derényi et al. 2002;
Powers et al. 2002; Sauer et al. 2017), while SL captures the overshoot of the tether pull
force relative to the equilibrium (or quasi-static) result.

We first investigate the dependence of the pull force on the patch geometry. Figure 8(a)
plots Fp,z as a function of z p for different values of Γ , at fixed SL = 0.1. We observe that
Γ alters the initial slope of the force versus displacement curve, but does not affect the
steady-state pull force after the tether is formed – the latter of which is expected to be
independent of the patch size (see (4.17) and Powers et al. 2002; Derényi et al. 2002). To
calculate the initial dependence of Fp,z on z p, we analyse the tent-like membrane shape
when deformations are small. In this limit, the shape equation (2.19) is decoupled from in-
plane lipid flows, and identical to its quasi-static counterpart (Sahu et al. 2020a). We thus
take the small-deformation, quasi-static membrane tent result from Powers et al. (2002)
and calculate the pull force to be given by (cf. (4.17))

Fp,z

kb/rc
= π

ln(Γ/2)
· z p
rc

, or equivalently
Fp,z

Feq
= 1

ln(Γ/2)
· z p
rc

, (4.20)

which is shown as the dashed cyan line in figure 6. Our calculation of (4.20) is provided in
Appendix D, and the collapse of force versus displacement curves is shown in figure 8(b).

The dependence of the pull force on the speed of tether pulling is investigated next.
Results from simulations with variable SL and fixed Γ = 1024 are plotted in figure 8(c).
The observed increase in pull force with increasing Scriven–Love number can be justified
as follows. During tether pulling, lipids in the surrounding region flow inwards towards
the tether. A mass balance, with the assumption of axisymmetry, indicates that the flow
speed is approximately vprc/r , where r is the distance from the z axis. Since the in-
plane velocity grows as we approach the tether from its surroundings, a surface tension
gradient is required to sustain the flow of lipids. As the tether is pulled more quickly,
larger velocities and, thus, larger tension gradients ensue. A greater surface tension in the
tether results, and leads to the larger pull force observed in simulations.

At present, we are unable to determine a general functional form for the long-time,
steady-state pull force as a function of SL due to the high degree of nonlinearity in
the governing equations. The main difficulty is that the surface tension and membrane
geometry enter both the in-plane and shape equations. Moreover, the viscous–curvature
coupling forces – which arise due to the flow of lipids – lead to O(SL) changes of the
membrane shape in the tent-like region. Since we are unable to approximate how the
steady-state pull force depends on the Scriven–Love number, we choose not to collapse
the data contained in figure 8(c). Instead, we plot the steady-state pull force Fss as a
function of the Scriven–Love number in figure 8(d). We expect Fss ≈Feq when SL → 0.
In the limit where SL � 1, we approximate dynamical effects by calculating the change
in surface tension under the assumption of no membrane shape changes. We find that

Fss(SL) = (1 + 2SL)Feq for SL � 1, (4.21)

which is shown as the dotted grey line in figure 8(d). Evidently, (4.21) is a reasonable
approximation when SL < 0.1.

4.2.5. The lateral translation of a membrane tether
Once a tube is pulled from a patch of membrane, a lateral force applied at the end of the
tether causes it to translate relative to the surrounding region. Lipids quickly flow and read-
just to accommodate the translating tether due to the in-plane fluidity of the membrane.
While tether translation via a lateral force is observed in in vitro studies (Datar et al. 2015;
Gomis Perez et al. 2022; Shi, Innes-Gold & Cohen 2022), the physics of tether translation
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Figure 8. The z component of the pull force (Fp,z) as a function of z p for different values of Γ and SL. (a)
When SL = 0.1 and Γ is varied, the initial slope of the force vs displacement curve is altered according to the
linear theory (see (4.20)). (b) By scaling the z displacement appropriately, the data collapses – with the steady-
state pull force independent of Γ after tether formation. The cyan line has slope one. (c) When Γ = 1024
and SL is varied, the initial slope of the force vs displacement curve is unchanged. The tent-to-tube transition
occurs at larger displacements, and the long-time pull force increases with SL. (d) Long-time pull force, Fss,
as a function of SL for Γ = 1024. The dotted grey line is the linear prediction from (4.21), which agrees with
simulation results when SL � 1 – as highlighted by the zoomed-in inset. The nonlinear dependence of Fss on
SL arises from the coupling between in-plane flows and out-of-plane shape deformations.

remains poorly understood. A theoretical description of tether translation is difficult
because the system is no longer axisymmetric, and the greatly simplified axisymmetric e-
quations (Derényi et al. 2002; Powers et al. 2002; Agrawal & Steigmann 2009, 2011; Omar
et al. 2020) no longer apply. Tether translation also cannot be captured with general, non-
axisymmetric Lagrangian numerical methods – as laterally translating the tether induces a
rigid body translation of the entire patch (see Appendix E). Arbitrary Lagrangian–Eulerian
finite element methods are thus required to simulate tether translation.

In figure 9 we present snapshots from a simulation of tether translation, which employed
the ALE-vb mesh motion. Starting with the t = 240 ζ r 2

c /kb configuration shown in
figures 4 and 5, we prescribe a lateral velocity in the x direction given by

v p(t) =
{

+vp ex for 240 < t · kb/
(
ζ r 2

c

)
< 300,

−vp ex for 300 < t · kb/
(
ζ r 2

c

)
< 420,

(4.22)
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Figure 9. Tether translation in the +ex (left column) and then −ex (right column) directions. Times are
measured in units of ζ r 2

c /kb, the pull velocity is specified in (4.22), and all other parameters are identical
to those in figure 4. The vertical red lines are a visual aid to highlight the lateral translation of the tether. For a
video of the simulation results, see supplementary movie 4.

where in both cases vp = 0.1kb/(ζ rc) to be consistent with our choice SL = 0.1. In
this simulation, Γ = 1024 is unchanged. We observe that the surface tension does not
appreciably change, as the tether is translated slowly relative to the fundamental time
scale of lipid rearrangements. Our results demonstrate that ALE methods can be used
in scenarios where Lagrangian methods fail, and set the stage for future investigations of
the forces, geometry and dynamics of tether translation. A video of the laterally pulled
tether simulation is provided in the software repository (Sahu 2024).

5. Conclusions and future work
In the present work we (i) developed a robust ALE numerical method for lipid membranes
and (ii) applied the method to a scenario where established Lagrangian and Eulerian
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schemes fail. In our development, the mesh is treated as a material that is independent
from the membrane – with the mesh equations of motion and corresponding boundary
conditions arbitrarily prescribed by the user. Mesh and material surfaces are constrained
to overlap with a Lagrange multiplier field, which enters the mesh dynamics as a force
per area in the normal direction. By choosing for the mesh to resist shear and dilatation
(through the mesh viscosity ζm) and bending (through the mesh bending moduli kmb and
kmg ), we successfully pulled a tether from a flat patch and then translated it laterally
across the membrane surface. In contrast, Lagrangian and Eulerian simulations are
respectively unable to translate and pull a tether. Our results thus mark the first numerical
demonstration of lateral tether translation. We also analysed the dynamics of tether pulling
by determining how the pull force increases monotonically with increasing pull speed. Our
findings were presented in terms of the Föppl–von Kármán number Γ and Scriven–Love
number SL, which define the tether pulling scenario.

We close by highlighting that our numerical implementation (Sahu 2024) is structured
such that one can easily choose different constitutive relations and boundary conditions for
the mesh motion. In this manner, the mesh itself can resist shear, dilatation or their rates
of change – irrespective of the material behaviour. Only purely viscous and viscous-with-
bending mesh motions were considered in the present work; we aim to investigate different
choices of mesh motion in a future study. As a consequence of the modular structure of the
numerical implementation, it is straightforward to adapt the code to simulate 2-D materials
with different constitution. We hope to support the open-source community in doing so.
We also intend to extend our method to describe additional phenomena governing
biological membranes – including the coupling between lipid flows and the hydrodynamics
of the surrounding fluid (Narsimhan et al. 2015; Gross & Atzberger 2018; Faizi et al. 2024),
membrane permeability (Alkadri & Mandadapu 2024), the effects of embedded particles
(Stone 2010; Stone & Masoud 2015; Sabass & Stone 2016) and in-plane diffusion and
phase transitions in multicomponent membrane systems (Subramaniam et al. 2013; Yu &
Košmrlj 2023; Venkatesh & Narsimhan 2024; Venkatesh et al. 2025).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10553.
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Appendix A. The finite element implementation
The main novelty of the present work is the treatment of the mesh as an independent
material with its own constitution, as discussed in § 2.7. However, none of the finite
element techniques used here are new. All fundamental unknowns, their arbitrary
variations and the surface position itself are discretised with the same basis functions – as
is standard in isoparametric finite element methods. Over any element Ωe ∈ Th , we have

xh(ζ
α̌, t) =

nen∑
k=1

Ne
k (ζ α̌) xe

k(t) = [Ne(ζ α̌)] [xe(t)] for all ζ α̌ ∈ Ωe. (A1)
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In (A1) the matrix [Ne(ζ α̌)] contains the non-zero elemental basis functions (see § 3.1)
and the column vector [xe(t)] collects the corresponding local degrees of freedom (or
nodal positions) in the usual manner of finite element analysis:

[Ne(ζ α̌)] :=
[
Ne

1 (ζ α̌) [1] Ne
2 (ζ α̌) [1] . . . Ne

nen(ζ
α̌) [1]

]
. (A2)

Here [1] is the 3 × 3 identity matrix in Cartesian coordinates and

[xe(t)] :=

⎡
⎢⎢⎢⎣

xe
1(t)
...

xe
nen(t)

⎤
⎥⎥⎥⎦. (A3)

The velocity and mesh velocity are similarly decomposed as

vh(ζ
α̌, t) = [Ne(ζ α̌)] [ve(t)] (A4)

and

vmh (ζ α̌, t) = [Ne(ζ α̌)] [vm,e(t)] (A5)

for all ζ α̌ ∈ Ωe. Since the membrane tension and mesh pressure are scalar quantities, they
are respectively discretised as

λh(ζ
α̌, t) = [Ne(ζ α̌)] [λe(t)] (A6)

and

pmh (ζ α̌, t) = [Ne(ζ α̌)] [ pm,e(t)] (A7)

for all ζ α̌ ∈ Ωe, where [Ne(ζ α̌)] is the row vector of non-zero elemental basis functions
given by (cf. (A2))

[Ne(ζ α̌)] :=
[
Ne

1 (ζ α̌) Ne
2 (ζ α̌) . . . Ne

nen(ζ
α̌)
]
. (A8)

Assuming a known solution at time t , the temporal evolution of the membrane is obtained
via the backward Euler method. In particular, the membrane surface is updated according
to (cf. (2.28), (2.29))

x(ζ α̌, t + �t) = x(ζ α̌, t) + �t vm(ζ α̌, t + �t), (A9)

or equivalently,

[xe(t + �t)] = [xe(t)] + �t [vm,e(t + �t)]. (A10)

As discussed in § 3.2, the mesh velocity and all other unknowns satisfy the residual vector
equation [

r([u(t + �t)])]= [0] , (A11)

which is solved via the Newton–Raphson method – in which [u(t)] is used as the initial
guess. We thus close our discussion of the finite element implementation by presenting the
contributions to the residual vector; all details can be found in the software documentation
(Sahu 2024).

A.1. The contributions to the residual vector
Our finite element implementation allows one to choose whether the mesh motion is
Lagrangian, Eulerian or ALE – and, in the latter case, whether the mesh dynamics is
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purely viscous or viscous with a bending resistance. The direct Galerkin expressions in
(2.31), (2.34), (2.48) and (2.57) dictate the residual vector for each mesh motion. In what
follows, we present the local residual vector contributions – corresponding to a single finite
element Ωe ∈ Th – for each fundamental unknown.

A.1.1. The surface tension contribution
As detailed in Sahu et al. (2020b), the residual vector corresponding to (2.12) is given by

[
reλ
]=∫

Ωe
[Ne]T(aα̌ · v,α̌

)
JΩ dΩ − αDB

ζ

{∫
Ωe

[Ne]Tλ dΩ − [Ge]T [He]−1[Ge] [λe]
}
,

(A12)
where all quantities in curly braces arise from the method of Dohrmann & Bochev (2004).
The matrices [Ge] and [He] in (A12) are constructed from the basis functions N̆ e

k (ζ
α̌) to

the space L̆ onto which surface tensions are projected. Since functions in L̆ are linear and
form a plane over Ωe (see (3.7)), they can be expressed as a + bζ 1̌ + cζ 2̌ = 0 for some
constants a, b, c ∈R. In our numerical implementation, the planar basis functions over a
single element are chosen to be N̆ e

1 (ζ α̌) = 1, N̆ e
2 (ζ α̌) = ξ(ζ 1̌) and N̆ e

3 (ζ α̌) = η(ζ 2̌), where
ξ and η parametrise the reference square [−1, 1] × [−1, 1] onto which Ωe is mapped.
Accordingly, over any element Ωe ∈ Th we define the row vector[

N̆
e(

ζ α̌
)] := [

N̆ e
1
(
ζ α̌
)

N̆ e
2
(
ζ α̌
)

N̆ e
3
(
ζ α̌
)]

, (A13)

with which the matrices [Ge] and [He] in (A12) are expressed as

[Ge] :=
∫

Ωe
[N̆

e]T[Ne] dΩ and [He] :=
∫

Ωe
[N̆

e]T[N̆
e] dΩ. (A14)

A.1.2. The material velocity contribution
It is straightforward to determine the contributions to the residual vector from (2.27). We
take advantage of the symmetry of σ α̌β̌ and M α̌β̌ to obtain[

rev
] :=

∫
Ωe

[Ne]T
,α̌

a
β̌

σ α̌β̌ JΩ dΩ +
∫

Ωe
[Ne]T

;α̌β̌
n M α̌β̌ JΩ dΩ −

∫
Ωe

[Ne]T f JΩ dΩ

−
3∑
j=1

∫
∂Ωe∩Γ

j
F

[Ne]T Fj JΓ dΓ −
∫

∂Ωe∩ΓM

[Ne]T
,α̌

να̌ n M JΓ dΓ. (A15)

In (A15), it is understood that the x , y and z components of the force terms are written to
appropriate entries of the residual vector.

A.1.3. The Eulerian mesh velocity contribution
For the choice of an Eulerian mesh motion, the residual vector contribution corresponding
to (2.33) is given by [

rE,e
m

] := αE
m

∫
Ωe

[Ne]T (vm − (n ⊗ n)v
)
JΩ (A16)

A.1.4. The ALE mesh pressure contribution
When an ALE mesh motion is employed, the mesh pressure ensures the kinematic
constraint (2.6) is satisfied. With the Dohrmann–Bochev method applied once again, the
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residual vector resulting from (2.39) is given by (cf. (A12))

[
rep
] = −

∫
Ωe

[Ne]T (n · (vm − v
))

JΩ dΩ

− αDB

ζ �2

{ ∫
Ωe

[Ne]T pm dΩ − [Ge]T [He]−1[Ge] [ pm,e]
}
. (A17)

A.1.5. The ALE mesh velocity contribution
When an ALE mesh motion is employed, the residual vector contribution from the mesh
velocity looks similar to that from the material velocity (cf. (A15)):

[
rA,e
m

] :=
∫

Ωe
[Ne]T

,α̌
a

β̌
σ α̌β̌
m JΩ dΩ +

∫
Ωe

[Ne]T
,α̌β̌

nM α̌β̌
m JΩ dΩ −

∫
Ωe

[Ne]T pm n JΩ dΩ

(A18)

In (A18), σ
α̌β̌
m,v and M α̌β̌

m,v (respectively σ
α̌β̌
m,vb and M α̌β̌

m,vb) are substituted when the motion
is ALE-viscous (respectively ALE-viscous-bending).

Appendix B. The static portion of a cylinder
Here we consider a static membrane patch that is a portion of a cylinder – for which

x(θ, z) = rc er (θ) + z ez . (B1)

In (B1), θ and z are the canonical cylindrical coordinates and rc is the cylinder radius. With
our differential geometric formulation, we arbitrarily choose to parametrise the surface as

ζ 1̌ := θ ∈ [0, α] and ζ 2̌ := z

�
∈ [0, 1], (B2)

such that

x(ζ α̌) = rc er (ζ 1̌) + �ζ 2̌ ez . (B3)

It is then straightforward to determine (Sahu 2022, Chapter IX, § 1)

a1̌ = rc eθ

(
ζ 1̌), a2̌ = �ez, n = er , a

α̌β̌
= diag

(
r 2
c , �2),

aα̌β̌ = diag
(
r −2
c , �−2), b

α̌β̌
= diag(−rc, 0), bα̌β̌ = diag

(− r −3
c , 0

)
,

(B4)
for which the mean and Gaussian curvatures are respectively given by

H = −1
2rc

and K = 0. (B5)

The couple-stress components M α̌β̌ and couple-free in-plane stress components σ α̌β̌ are
calculated via (2.15) and (2.16) as

M α̌β̌ =
⎛
⎜⎝

−kb
2r 3

c
0

0
−kb
2rc�2 − kg

rc�2

⎞
⎟⎠ (B6)
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and

σ α̌β̌ =

⎛
⎜⎜⎝
λ0

r 2
c

− 3kb
4r 4

c
0

0
λ0

�2 + kb
4r 2

c �2

⎞
⎟⎟⎠, (B7)

where, for a static patch, there are no viscous stresses – for which πα̌β̌ = 0. Here λ0 denotes
the constant surface tension, which is set by the balance of forces in the out-of-plane
direction. With some additional calculations, we find the stress vectors T α̌ to be given by

T 1̌ =
(
λ0

rc
− kb

4r 3
c

)
eθ and T 2̌ =

(
λ0

�
+ kb

4r 2
c �

)
er . (B8)

We now separately consider the top and bottom edges, where ζ 2̌ is fixed, and the left and
right edges, where ζ 1̌ is fixed.

The top and bottom surfaces: at the top (ζ 2̌ = 1) and bottom (ζ 2̌ = 0) edges, ν = ±ez ,
ν

1̌
= 0, ν

2̌
= ±�, τ = ∓eθ , τ

1̌
= ∓rc and τ

2̌
= 0. We thus determine (see § 2.3.1)

M = M α̌β̌ν
α̌
ν
β̌

= M 2̌2̌ν
2̌
ν

2̌
= − kb

2rc
− kg

rc
(B9)

and

F = T α̌ν
α̌

−
(
M α̌β̌ ν

α̌
τ
β̌

n
)
,μ̌

τ μ̌ = T 2̌ν
2̌
= ±

(
λ0 + kb

4r 2
c

)
ez . (B10)

The sign of the moment in table 1 is opposite that of (B9) due to the difference in
orientation of the unit normal with respect to the surface.

The left and right surfaces: at the left (ζ 1̌ = α) and right (ζ 1̌ = 0) edges, ν = ±eθ , ν
1̌
=

±rc, ν
2̌
= 0, τ = ±ez , τ

1̌
= 0 and τ

2̌
= ±�. In the same manner, we calculate

M = M α̌β̌ν
α̌
ν
β̌

= M 1̌1̌ν
1̌
ν

1̌
= − kb

2rc
(B11)

and

F = T α̌ν
α̌

−
(
M α̌β̌ ν

α̌
τ
β̌

n
)
,μ̌

τ μ̌ = T 1̌ν
1̌
= ±

(
λ0 − kb

4r 2
c

)
eθ . (B12)

The moment in (B11) again differs from the moment reported in table 1 due to the choice
of normal vector.

Appendix C. The numerical calculation of the pull force
In this section we determine how to set the membrane velocity v to a desired value v p
at the centre of the membrane patch. Given the use of non-interpolatory basis functions,
there is no unique way to do so. We thus choose to set the membrane velocity over the
entire finite element containing the point of interest. The pull force Fp(t) resulting from
the imposed displacement is calculated via variational arguments.
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C.1. The inability to uniquely displace a single point on the membrane

To begin, at a chosen point (ζ p̌
1, ζ p̌

2) we intend for

v
(
ζ p̌

α, t
)= v p(t) , (C1)

where v p(t) is a known function. With the velocity discretisation in (A4), (C1) can be
expressed as

nen∑
k=1

Ne
k

(
ζ p̌

α
)
vek(t) = v p(t) , (C2)

where {Ne
k (ζ p̌

α)} and {vek} are respectively the local basis functions and nodal velocities
of the finite element Ωe

p containing ζ p̌
α . Importantly, the basis function values are set by

the choice of ζ p̌
α , and they are non-interpolatory (Piegl & Tiller 1997) – and thus, all

nen nodal velocities contribute to (C2). Since v p ∈R3 and vek ∈R3 for all k, (C2) can be
understood as a system of three scalar equations involving 3 · nen scalar unknowns. As
nen = (poly + 1)2 for B-splines of polynomial order poly (Piegl & Tiller 1997), there is no
unique way to specify the {vek} in (C2). In practice, we set

vek(t) = v p(t) for k ∈ {1, 2, . . . , nen}. (C3)

Given the properties of B-spline functions (Piegl & Tiller 1997), (C3) results in a uniform
prescribed velocity over the entire parametric element Ωe

p – expressed as

v(ζ α̌, t) = v p(t) for all ζ α̌ ∈ Ωe
p. (C4)

C.2. The pull force when a finite element is uniformly displaced
In this section we calculate the force Fp required to pull an entire finite element at a
prescribed velocity as in (C4). From the strong form of the governing membrane equations
(2.18), (2.19) we recognise the pull force is the area integral of the net body force per area
f on the membrane – expressed as

Fp(t) =
∫

Ωe
p

f (ζ α̌, t) JΩ(ζ α̌, t) dΩ. (C5)

Since the prescribed velocity in (C4) can be viewed as a constraint, f is then understood
as the associated Lagrange multiplier field over the element Ωe

p.
Our task now is to determine how to calculate Fp numerically, which is accomplished

by considering how the weak form would be modified if (C4) was not satisfied directly.
The principle of virtual power would then necessitate the quantity

δ

{ ∫
Ωe

p

f
(
ζ α̌, t

) · (v(ζ α̌, t) − v p(t)
)
JΩ(ζ α̌, t) dΩ

}

=
∫

Ωe
p

δv · f JΩ dΩ +
∫

Ωe
p

δ f · (v − v p

)
JΩ dΩ +

∫
Ωe

p

f · (v − v p

)
δ JΩ dΩ (C6)

be subtracted from the direct Galerkin expression, where δ JΩ = Δt JΩ aα̌ · δvm
,α̌

(see
Appendix C.2.1 of Sahu et al. 2020b). At this point, the fundamental unknowns and
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arbitrary variations are discretised as

v
(
ζ α̌, t

)= [
Ne

p

][
vep(t)

]
, vm

(
ζ α̌, t

)= [
Ne

p

][
vm,e
p (t)

]
, f

(
ζ α̌, t

)= [
Ne

p

][
f ep(t)

]
,

δv
(
ζ α̌
)= [

Ne
p

][
δvep

]
, δvm

(
ζ α̌
)= [

Ne
p

][
δvm,e

p

]
, δ f

(
ζ α̌
)= [

Ne
p

][
δ f ep

]
.

(C7)
In (C7) we introduced the shorthand [Ne

p] := [Ne(ζ α̌)] for all ζ α̌ ∈ Ωe
p. Upon substituting

(C7) into the second line of (C6) and defining the elemental mass matrix [Me
p] as

[
Me

p

] :=
∫

Ωe
p

[
Ne

p

]T[Ne
p

]
JΩ dΩ (C8)

we find the quantity[
δvep

]T[Me
p

] [
f ep(t)

]+ [
δ f ep

]T{[Me
p

] [
vep(t)

]−
( ∫

Ωe
p

[
Ne

p

]T
JΩ dΩ

)
v p(t)

}

+ [
δvm,e

p

]T ∫
Ωe

p

[
Ne

p

]T
,α̌

· (aα̌ ⊗ f
)
(v − vp)�t JΩ dΩ (C9)

is to be subtracted from the discretised weak Galerkin expression Gh . We now separately
consider the portions of (C9) arising from variations in the pull force, material velocity
and mesh velocity.

C.2.1. The pull force contribution
The portion of the direct Galerkin expression associated with the net force per unit area
f can be expressed as

G f = [
δ f ep

]T( ∫
Ωe

p

[
Ne

p

]T
JΩ dΩ

)
v p(t) + [

δ f ep
]T[Me

p

] [
vep(t)

]= 0 ∀ [
δ f ep

]
(C10)

Importantly, the mass matrix [Me
p] is invertible and the variation [δ f ep] is arbitrary, so the

nodal velocity degrees of freedom are found to be given by[
vep(t)

]= [
Me

p

]−1
( ∫

Ωe
p

[
Ne

p

]T
JΩ dΩ

)
v p(t) (C11)

It is a well-known property of B-splines (Piegl & Tiller 1997) that if the constraint
v(ζ α̌, t) = v p(t) is enforced over the entire element, then the unique solution for the nodal
degrees of freedom is given by

[
vep(t)

] =
⎡
⎢⎣

v p(t)
...

v p(t)

⎤
⎥⎦ =

⎡
⎢⎣ [1]

...

[1]

⎤
⎥⎦ v p(t). (C12)

By comparing (C11) and (C12), we recognise that

[
Me

p

]−1
∫

Ωe
p

[
Ne

p

]T
JΩ dΩ =

⎡
⎢⎣ [1]

...

[1]

⎤
⎥⎦, (C13)

which will be useful in our subsequent developments.
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C.2.2. The material velocity contribution
The material velocity portion of the discretised direct Galerkin expression Gh is given by

Gv = [δv]T [rv] − [
δvep

]T[Me
p

] [
f ep(t)

]= 0 for all [δv], (C14)

where [δv] is the global variation of the nodal velocities, [δvep] is the velocity variation of
the nen nodes associated with Ωe

p and [rv] is the velocity portion of the global residual
vector in the absence of a pull force. Let us imagine reordering the global velocity degrees
of freedom such that those associated with Ωe

p appear last, and those not associated with
the pull force appear first. The global velocity unknowns, their arbitrary variation and
residual vector in the absence of a pull force are respectively expressed as

[v(t)] =
[ [

v p̄(t)
]

[
vep(t)

]
]
, [δv] =

[[
δv p̄

]
[
δvep

]
]
, and [rv] =

[ [
rv
p̄

]
[
rv,e
p
]
]
. (C15)

Here, the subscript ‘ p̄’ is used to signify ‘not p,’ i.e. degrees of freedom not associated
with the pulled element Ωe

p. Substituting (C15) into (C14) yields[
δv p̄

]T[rv
p̄

]+ [
δvep

]T[rv,e
p

]− [
δvep

]T[Me
p

] [
f ep(t)

]= 0 for all
[
δv p̄

]
,
[
δvep

]
. (C16)

Since the arbitrary variations [δv p̄] and [δvep] are independent of one another, (C16)
requires that [rv

p̄ ] = [0] – which is the equation one obtains when the nodal velocities
over Ωe

p are set directly. Additionally, the nodal body force degrees of freedom are found
to be given by [

f ep(t)
]= [

Me
p

]−1[rv,e
p

]
. (C17)

By substituting (C7) and then (C17) into (C5), we calculate the pull force as

Fp(t) =
( ∫

Ωe
p

[
Ne

p
]T

JΩdΩ

) [
f e

p(t)
] =

( ∫
Ωe

p

[
Ne

p
]T

JΩdΩ

) [
Me

p
]−1[rv,e

p

]
. (C18)

Finally, recognising the mass matrix is symmetric and substituting the transpose of (C13)
into (C18) yields

Fp(t) = [[1] [1] . . . [1]] [rv,e
p

]
, (C19)

which is straightforward to calculate within finite element subroutines. Equation (C19) is
the main result of this section.

C.2.3. The mesh velocity contribution
The mesh velocity portion of Gh can be written as

Gm = [δvm]T [rm] − [
δvm,e

p

]T ∫
Ωe

p

[
Ne

p

]T
,α̌

· (aα̌ ⊗ f
)
(v − v p) �t JΩ (C20)

for any arbitrary variation [δvm]. By reordering global velocity degrees of freedom in the
same manner as (C15), we find that[

δvmp̄
]T[rmp̄

]+ [
δvm,e

p

]T[rm,e
p

]− [
δvm,e

p

]T ∫
Ωe

p

[
Ne

p

]T
,α̌

· (aα̌ ⊗ f
)
(v − v p) �t JΩ

(C21)
for all independent variations [δv p̄] and [δvep]. Equation (C21) requires that [rmp̄ ] = [0],
which solves for all mesh velocity degrees of freedom not associated with the finite
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element Ωe
p. In addition, we find that

[
rm,e
p

] =
∫

Ωe
p

[
Ne

p

]T
,α̌

· (aα̌ ⊗ f
)
(v − v p) �t JΩ, (C22)

where [rm,e
p ] is the mesh velocity portion of the residual vector corresponding to Ωe

p in
the absence of a pull force. The following discussion explains why (C22) is not used in our
code.

C.3. The numerical implementation
In our numerical implementation we calculate the pull force Fp(t) directly – rather than
with a Lagrange multiplier field. To do so, we set the nen nodal material velocity values
{vek(t)} associated with Ωe

p directly according to (C12). Though these nodes are removed
from the degree-of-freedom list, the residual [rv,e

p ] is still calculated, from which the pull
force is determined according to (C19). We also directly set the nen mesh velocity degrees
of freedom {vm,e

k (t)} associated with Ωe
p to be v p(t) in a similar fashion. Since the nodal

mesh velocities on Ωe
p are known, they are removed from the degree-of-freedom list, and

so the integral term in (C22) is not evaluated in practice.

Appendix D. The pull force at small deformations
Consider a membrane patch which, prior to any deformation, is at the constant surface
tension λ0 and spans the region between two concentric circles in the x–y plane. We denote
� as the diameter of the outer circle and 2rp as the diameter of the inner circle. Eventually,
we will take the limit as rp → 0. When a deformation is applied quasi-statically and the
membrane height h = h(r, θ) above the x–y plane is small (i.e. h � �), the membrane
shape is known to satisfy (Sahu 2022, Chapter VII)

λ0∇2h − 1
2
kb∇4h = 0 , (D1)

where

∇2( · ) = 1
r

∂

∂r

(
r

∂ ( · )

∂r

)
+ 1

r2
∂ ( · )

∂ θ
(D2)

is the 2-D Laplacian expressed in terms of the canonical cylindrical coordinates r and θ .
In what follows, all lengths are non-dimensionalised by �/2, for which

h∗ := 2h
�

, r∗ := 2r
�

, and ∇̂2 := �2

4
∇2. (D3)

With (4.12) and (D3), the shape equation (D1) is presented in dimensionless form as

∇̂2h∗ − Γ

2
∇̂4h∗ = 0. (D4)

In comparing (D4) with the description in Powers et al. (2002), we recognise the small
parameter ε in the latter is given by 2/Γ in our notation. Thus, for an axisymmetric
membrane with (i) prescribed displacement z p at r = rp, (ii) zero slope at r = rp, (iii) no
displacement at r = �/2, and (iv) no moment at r = �/2, we reproduce the Powers et al.
(2002) solution as

h∗(r∗) = z∗
p · αK1(α) ln r∗ + K0

(
αr∗/r∗

p

)
αK1(α) ln r∗

p + K0(α)
, (D5)
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where

α := r∗
p

√
Γ

2
(D6)

is a constant parameter defined for notational convenience. Note that in our numerics,
we require zero slope rather than zero moment on the outer boundary. However, when
membrane deformations are small, we do not expect this choice of boundary condition
to affect the pull force calculation. In (D5) and (D6), K0 and K1 are modified Bessel
functions of the second kind, and z∗

p := 2z p/� is the dimensionless displacement at the
inner membrane boundary – which is located at r∗ = r∗

p := 2rp/�.
With the solution for the membrane shape at a given displacement in (D5), we seek to

determine the magnitude of the pull force in the ez direction: Fp,z . The pull force is related
to Fz , the force per length in the ez direction at the inner boundary, via

Fp,z = lim
rp→ 0

2π rp Fz . (D7)

Since the membrane patch is parallel to the x–y plane at the inner boundary, we recognise
that (Sahu 2022, Chapter V, § 6(e))

Fz = kb
∂ H

∂r

∣∣∣∣
rp

= kb
2

(
∂

∂r

(∇2h
))∣∣∣∣

rp

, (D8)

where the mean curvature H = (1/2)∇2h in the limit of small deformations. Moreover,
since the membrane height is axisymmetric and has zero slope at the inner boundary, we
apply (D2) and find that

Fp,z = lim
r∗
p→ 0

2π kb
�

(
r∗
p

d3h∗

d(r∗)3

∣∣∣∣
r∗
p

+ d2h∗

d(r∗)2

∣∣∣∣
r∗
p

)
. (D9)

With the height solution in (D5) and properties of Bessel functions (Abramowitz & Stegun
1964), the terms in parenthesis in (D9) are found to be

d2h∗

d(r∗)2

∣∣∣∣
r∗
p

= z∗
p (Γ/2) K0(α)

αK1(α) ln r∗
p + K0(α)

(D10)

and

r∗
p

d3h∗

d(r∗)3

∣∣∣∣
r∗
p

= −z∗
p (Γ/2)

[
K0(α) + αK1(α) ]

αK1(α) ln r∗
p + K0(α)

. (D11)

Substituting (D10) and (D11) into (D9) yields

Fp,z = lim
r∗
p→ 0

z∗
pπ kbΓ

�

( −αK1(α)

αK1(α) ln r∗
p + K0(α)

)
. (D12)

At this point, we evaluate the limit by recognising α → 0 as r∗
p → 0. In addition, we use

the Bessel function relations (Abramowitz & Stegun 1964)

lim
α → 0

αK1(α) = 1 and lim
α → 0

K0(α) = − ln(α). (D13)

By substituting (4.14), (D6) and (D13) into (D12) and rearranging terms, we obtain the
small-deformation pull force expression in (4.20) – presented here as

Fp,z = π kb z p
r 2
c ln(Γ/2)

. (D14)
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Figure 10. Tether translation in the ex direction with a Lagrangian mesh motion. In the left column, simulation
boundary conditions are those specified in the first two rows of table 3. Twisting and tilting of the tether, along
with further striation of the surface tension, ensue. In the right column, an attempt is made to remove unphysical
constraints on the membrane by only pinning the centre of the bottom boundary. Upon lateral pulling, the
mesh rotates about the centre of the bottom edge; twisting and tension striation are once again observed. Both
simulations fail to capture the expected behaviour shown in the left column of figure 9. As in the main text,
times are measured in units of ζ r 2

c /kb, the pull velocity is specified in the first row of (4.22), and all other
parameters are identical to those in figure 4. The vertical red lines are a visual aid to highlight the motion of
the tether.

Appendix E. The translation of a tether with a Lagrangian mesh motion
When a pulled tether is translated laterally across a membrane surface, lipids in
the surrounding patch flow in-plane to accommodate the large out-of-plane shape
deformations. For a given prescribed lateral tether velocity as in (4.22), we do not know
the corresponding velocity field v(ζ α̌, t) over the membrane patch a priori. Thus, any
boundary conditions that pin certain nodes yield unphysical results, as shown in figure 10.
If no nodes are pinned, however, a rigid body translation results – and the dynamics of
lateral tether motion are not obtained. Lagrangian simulations are thus unable to capture
the physics of tether translation.
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