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A model for the dynamics of fluctuating, far-from-equilibrium interfaces was proposed by M.
Kardar, G. Parisi, and Y.-C. Zhang [Phys. Rev. Lett. 56 (1986)], and is briefly discussed here.
Novel aspects of the development are highlighted, and their impact on statistical physics is described.
Connections to other physical systems and recent advances are commented on.

Dynamic, fluctuating interfaces are ubiquitous in far-
from-equilibrium systems. Examples include the edge
of an outwardly expanding bacterial colony in a petri
dish [1], the flame front of an ignited sheet of paper [2],
and the interfaces between defect-rich and defect-poor
phases in turbulent liquid crystals [3]—the latter of which
is presented in Fig. 1. If the interface is described by a
height field h(x, t) above the x-axis, where x ∈ [0, L],
then we quantify the average height h̄(t) and interface
width w(t, L), respectively, as

h̄(t) :=
1

L

∫ L

0

h(x, t) dx (1)

and

(
w(t, L)

)2
:=

1

L

∫ L

0

(
h(x, t) − h̄(t)

)2

dx . (2)

Following the well-known scaling hypothesis in statistical
physics, we expect the interface width to scale as

w(t, L) ∼ Lχ F (t/Lz) , (3)

where F is some universal function, χ is the roughening
exponent, and z is the dynamic exponent. Remarkably,
the scaling exponents are identical in seemingly unre-
lated physical systems—including the bacterial colonies,
ignited paper, and liquid crystals mentioned earlier—and
are experimentally measured to be

χexp =
1

2
and zexp =

3

2
. (4)

Such results are a hallmark of universality in the dynam-
ics of physical systems.

FIG. 1. Experimental images of turbulent liquid crystals,
highlighting the growth of a defect-rich phase (dark grey) in a
defect-poor phase (light grey). The dynamic, fluctuating in-
terface between the two phases exhibits the scaling behavior
given in Eqs. (3) and (4). Image reproduced from Ref. [3].

A major objective of modern statistical physics is to
describe universal behavior in seemingly unrelated phys-
ical systems, even those far from equilibrium. To this
end, we recognize the height h(x, t) as an order param-
eter field. Here and henceforth, x ∈ Rd describes a d-
dimensional surface, about which an interface fluctuates
in d + 1 spatial dimensions (d = 1 in the experimental
examples discussed previously). Moreover, we recognize
interfacial dynamics are invariant to the choice of the
origin of the height field, such that only derivatives of h
enter our description of the interface. The lowest-order
effective Hamiltonian of the interface is then given by

Heff =

∫
ddx

(
ν

2

(
∇h

)2)
. (5)

We note that while higher-order terms could be included
in Eq. (5), they contain more spatial derivatives and are
expected to be less relevant in describing universal be-
havior. By drawing analogy between the dynamics of an
order parameter field and those of an overdamped point
particle in a surrounding medium [4], we expect a height
field whose energetics are governed by Eq. (5) to evolve
in time according to

∂h(x, t)

∂t
= ν∇2h + η(x, t) , (6)

known as the Edwards–Wilkinson (EW) equation [5]. In
Eq. (6), η(x, t) is the thermal noise, assumed to be Gaus-
sian with moments ⟨η(x, t)⟩ = 0 and

⟨η(x, t) η(x′, t′)⟩ = 2Dδd(x− x′)δ(t− t′) . (7)

As the EW equation (6) is linear, it can be solved exactly,
for which the dynamical exponents are given by

χEW =
2− d

2
and zEW = 2 . (8)

Importantly, for a d = 1 dimensional interface, we find
χEW
(d=1) = 1/2 and zEW

(d=1) = 2; the latter disagrees with
experimental measurements [cf. Eq. (4)]. Moreover, we
argued previously that introducing additional terms in
the effective Hamiltonian (5) is not expected to alter
the predicted scaling behavior (8). Thus, a fundamen-
tal question arises: How does one explain experimental
observations of universal interfacial dynamics?
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The discrepancy between theory and experiments in
the scaling of interfaces was resolved in the seminal work
by M. Kardar, G. Parisi, and Y.-C. Zhang in 1986 [6].
Crucially, the authors recognized that when (i) interface
growth is everywhere locally orthogonal to the interface,
and (ii) the interface is described by a vertical displace-
ment above some surface, then geometric effects need to
be taken into account. For example, consider a d = 1
dimensional interface with constant slope, as shown in
Fig. 2. If there is a flux of material vδt normal to the sur-
face, then simple geometry reveals the change in vertical
height δh is given by δh = vδt

√
1 + (∂xh)2 . When the

slope is small (∂xh ≪ 1), we find δh/δt ≈ v [1+ 1
2 (∂xh)

2 ].
Generalizing this result to a d-dimensional interface, we
find

δh

δt
= v

(
1 +

1

2

(
∇h

)2)
. (9)

Now recognizing we can describe the interface in a mov-
ing frame that absorbs the constant v term in Eq. (9),
we include the gradient squared term in the EW equa-
tion (6) to arrive at the celebrated Kardar–Parisi–Zhang
(KPZ) equation—given by

∂h(x, t)

∂t
= ν∇2h +

λ

2
(∇h)2 + η(x, t) . (10)

In Eq. (10), ν is a surface tension that smooths the in-
terface, while λ captures the nonlinear growth normal
to the interface; the noise η(x, t) is identical to that in
Eq. (6). Importantly, the nonlinear term in the KPZ
equation (10) cannot be obtained from the variation of
an effective Hamiltonian—and is thus a nontrivial step
forward in the description of out-of-equilibrium fluctuat-
ing interfaces.

To determine the scaling behavior of the KPZ equa-
tion, we begin by prescribing the position x, time t, and
height h to scale as

x′ = b−1x , t′ = b−z t , and h′ = b−χh .
(11)

By substituting Eq. (11) into Eq. (10) and seeking an
equation invariant to the rescaling, we find the tension

v δt
δh = v δt

√
1 + (∂xh)2

≈ v δt
[
1 + 1

2(∂xh)
2
]

h(x, t)

x

FIG. 2. Schematic showing the origin of the nonlinear term
in the KPZ equation (10). For a flux of material vδt nor-
mal to the interface (blue), the height field (red) changes by
δh = v δt

√
1 + (∂xh)2 , which—when the slope is small—can

be approximated as δh ≈ v δt [1 + 1
2
(∂xh)

2 ].

ν, diffusion constant D, and nonlinear parameter λ scale
as

ν′ = bz−2ν , D′ = bz−d−2χD , λ′ = bχ+z−2λ .
(12)

In the vicinity of the EW fixed point, ν′ = ν and D′ = D,
for which the scaling exponents are given by Eq. (8).
At this fixed point, however, the nonlinear parameter
scales as λ′ = b(2−d)/2λ—relevant under rescaling when
d = 1, and marginal when d = 2. We thus expect to find
qualitatively different physics between the EW and KPZ
equations when d = 1, and possibly also when d = 2.

To systematically calculate how the paramters ν, D,
and λ rescale, we employ the dynamic renormalization
group (RG). The flow equations can be obtained via two
different procedures. With the first method, employed in
Refs. [7] and [8] (see also Ref. [9]), one takes the Fourier
transform of Eq. (10) and uses an iterative procedure
to find the flow equations to the appropriate order. In
the second method, carried out in Ref. [10], one elevates
the KPZ equation to an exponent via an auxiliary field,
obtains the action, and then uses the Martin–Siggia–Rose
procedure to calculate the flow equations. Both methods
yield identical results; the flow equations at the one-loop
level are given by

dν
dℓ

= ν

[
z − 2 + Kd

λ2D

ν3
2− d

4d

]
, (13)

dD
dℓ

= D

[
z − d − 2χ + Kd

λ2D

4ν3

]
, (14)

and

dλ
dℓ

= λ
[
χ + z − 2

]
, (15)

where Kd is the surface area of the d-dimensinal unit
sphere divided by (2π)d. Equations (13) and (14) re-
veal the one-loop correction couples all three parameters
through the quantity λ2D/ν3, while Eq. (15) shows the
flow equation for λ is unaltered [cf. Eq. (12)]. Once again
assuming we are at the EW fixed point (ν∗, D∗), where
(dν/dℓ)|(ν∗,D∗) = 0 and (dD/dℓ)|(ν∗,D∗) = 0, we find all
three flow equations can be combined into a single flow
equation for the nonlinear parameter λ—given by

dλ
dℓ

=
2− d

2
λ + Kd

2d− 3

4d

D∗
ν3∗

λ3 . (16)

As we will now discuss in detail, Eq. (16) indicates λ
can be relevant in any dimension, in which case the non-
linear term in the KPZ equation leads to new scaling
behaviors. Moreover, as higher-order nonlinear terms in
a Langevin description of a fluctuating interface will con-
tain more spatial derivatives, they are expected to be less
relevant under the RG flow and thus will not affect the
long-time, long-wavelength dynamics. The KPZ equa-
tion thus brings about a new universality class.
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In d = 1 dimensions, the flow of λ is given by dλ/dℓ =
λ/2 − λ3K1D∗/(4ν

3
∗), and there are two solutions λ∗

where dλ/dℓ = 0. The solution λ∗ = 0 is unstable, in-
dicating an initially small value of λ will increase under
the RG (see Fig. 3). On the other hand, the solution
λ∗ =

√
2ν3∗/(K1D∗) is stable. The KPZ scaling expo-

nents at the stable fixed point are found to be

χKPZ
(d=1) =

1

2
and zKPZ

(d=1) =
3

2
, (17)

which are significant for two reasons. First, the RG KPZ
exponents (17) agree with the experimentally measured
exponents (4)—implying the nonlinear term in the KPZ
equation leads to a new universality class in one dimen-
sion. Second, in d = 1 dimensions only, the KPZ equation
can be solved exactly, with the stationary probability dis-
tribution of an interface height h given by [4, 9]

P[h(x, t)] =
1

Z
exp

{
− ν

2D

∫
dx

[(
∂xh

)2]}
. (18)

Remarkably, the exact scaling exponents of the one-
dimensional KPZ solution (18) are identical to those from
the one-loop RG analysis (17).

In Eq. (16), d = 2 is the critical dimension, for which
there is no linear term. The nonlinear parameter λ flows
according to dλ/dℓ = λ3K2D∗/(8ν

3
∗). Here, λ∗ = 0 is

the only fixed point, and is unstable. An initially nonzero
value of λ will increase under the RG and flow to some
strong-coupling limit, and the nonlinearity in the KPZ
equation is again relevant in two dimensions. Unfortu-
nately, however, an RG analysis does not reveal what this
limit is, and there is no exact solution for the KPZ equa-
tion in d = 2 dimensions. Accordingly, the KPZ scaling
exponents can only be calculated numerically.

d

λ

1 2 3 4

λc
∗

strong coupling

χ = 1
2

z = 3
2

EW

FIG. 3. Flow diagram of the parameter λ in different dimen-
sions d, adapted from Refs. [9, 10]. As discussed in the text,
λ is relevant in d = 1 and d = 2 dimensions. For d ≥ 3, there
is a critical value of λ above which it is relevant, and below
which it is irrelevant. In the former case, the system flows to
a strong-coupling limit where the interface is rough, while in
the latter case the system flows to the EW equation, where
λ = 0 and the interface is smooth.

In d ≥ 3 dimensions, we again find two solutions λ∗
where dλ/dℓ = 0. Here, the λ∗ = 0 solution is stable,
such that a system with an initially small value of λ will
flow to the EW fixed point where λ = 0. An unstable
fixed point exists at λc

∗ =
√
2(d− 2)ν3∗/[KdD∗(2d− 3)],

indicating that λ flows away from λc
∗ under the RG. Ac-

cordingly, the curve λ = λc
∗ serves as a separatrix for

d ≥ 2: if λ < λc
∗, the system flows to the EW fixed point

and the nonlinearity is irrelevant, while if λ > λc
∗ then

the system flows to a strong-coupling limit where the
nonlinearity is relevant (see Fig. 3). Though the strong-
coupling limit cannot be accessed via the RG, and no
exact solution is known for d ≥ 3, we recognize that
χ > 0 in the strong-coupling limit and χ < 0 at the
EW fixed point—implying there is a phase transition be-
tween rough (χ > 0) and smooth (χ < 0) interfaces. It is
important to reiterate that the nonlinearity in the KPZ
equation is relevant in d = 1 and d = 2, as well in d = 3
when λ > λc

∗. In such cases, interfacial dynamics fall into
the KPZ universality class.

Though the KPZ equation was developed to explain
the dynamic scaling growing interfaces, the resultant uni-
versality class emerges in unrelated systems. For exam-
ple, stochastic particle dynamics models of interfaces—
including the ballistic deposition (BD) and corner growth
(CG) models—exhibit KPZ universality [11]. By tak-
ing the gradient of the KPZ equation (10) and express-
ing the result in terms of v(x, t) := −λ∇h(x, t), we
arrive at the noisy Burgers equation: a hydrodynam-
ical description of shock waves in a fluid [6]. If, on
the other hand, we employ a Cole–Hopf transforma-
tion and express the KPZ equation (10) in terms of
W (x, t) := exp{λh(x, t)/(2ν)}, we arrive at a descrip-
tion of a directed polymer in a random potential [6].
Interestingly, a recent study found KPZ universality in
quantum entanglement entropy growth [12], and in doing
so drew a quantum mechanical analogy to the aforemen-
tioned stochastic particle dynamics, hydrodynamics, and
directed polymer descriptions. Such widespread exam-
ples demonstrate the profound impact of the KPZ equa-
tion and universality class on modern statistical physics.
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