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An arbitrary Lagrangian–Eulerian (ALE) finite element method for arbitrarily curved and 
deforming two-dimensional materials and interfaces is presented here. An ALE theory 
is developed by endowing the surface with a mesh whose in-plane velocity need not 
depend on the in-plane material velocity, and can be specified arbitrarily. A finite element 
implementation of the theory is formulated and applied to curved and deforming surfaces 
with in-plane incompressible flows. Numerical inf–sup instabilities associated with in-
plane incompressibility are removed by locally projecting the surface tension onto a 
discontinuous space of piecewise linear functions. The general isoparametric finite element 
method, based on an arbitrary surface parametrization with curvilinear coordinates, 
is tested and validated against several numerical benchmarks. A new physical insight 
is obtained by applying the ALE developments to cylindrical fluid films, which are 
computationally and analytically found to be stable to non-axisymmetric perturbations, and 
unstable with respect to long-wavelength axisymmetric perturbations when their length 
exceeds their circumference. A Lagrangian scheme is attained as a special case of the ALE 
formulation. Though unable to model fluid films with sustained shear flows, the Lagrangian 
scheme is validated by reproducing the cylindrical instability. However, relative to the ALE 
results, the Lagrangian simulations are found to have spatially unresolved regions with few 
nodes, and thus larger errors.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, and the subsequent manuscript in the series1 [1], we develop an arbitrary Lagrangian–Eulerian (ALE) 
theory for arbitrarily curved and deforming two-dimensional interfaces with in-plane fluidity. The theory is based on a 
surface discretization which is independent of the in-plane material flow, such that the surface mesh need not convect with 
the material. Consequently, two-dimensional materials with large in-plane flows on arbitrarily deforming surfaces can be 
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modeled. In Part I, we develop our theory and use standard numerical techniques to devise an isoparametric ALE finite 
element method for incompressible fluid films. We then implement the finite element formulation, model the deformations 
and flows of such materials over time, and provide several numerical results for both flat and cylindrical geometries. In 
Part II, we hope to extend the finite element formulation to lipid membranes and study membrane behavior in several 
biologically relevant situations. As the equations governing single- and multi-component lipid membranes reduce to the 
fluid film equations in the limit where no elastic energy is stored in the membrane, such a separation is natural and allows 
us to present our results in a more accessible manner.

Two-dimensional fluids have played an increasingly important role in many engineering applications, in which they often 
arise at phase boundaries in multiphase systems [2]. For example, under the influence of gravity and capillary forces, foams 
will drain over time until the constituent bubbles burst [3]. Foam lifetime plays a key role in their viability for engineering 
applications, and there have consequently been many efforts to improve foam stability [2]. Similar efforts have been made 
to stabilize emulsions and colloidal dispersions, which again are of much industrial value [4,5]. Surfactants are often used 
to stabilize vapor–liquid and liquid–liquid interfaces by lowering the local surface tension [6]; surface tension gradients can 
drive Marangoni flows [7–9] and in some cases have been shown to significantly affect material properties [10].

Two-dimensional materials with in-plane fluidity also play a fundamental role in biology. Biological membranes, which 
are interfaces composed of lipids and proteins, are in-plane fluid and out-of-plane elastic materials [11]. They make up 
the boundary of the cell as well as many of its internal organelles, including the nucleus, endoplasmic reticulum, and 
Golgi complex. Lipid membranes thus add structure and organization to the cell, and furthermore play an important role 
in many cellular processes. Endocytosis, for example, begins when proteins in the surrounding bulk fluid bind to the cell 
membrane’s constituent lipids and proteins at a specific location. The membrane forms an initially shallow invagination, 
which then develops into a mature bud and eventually pinches off into a membrane-bound vesicle that enters the cell 
[12]. The vesicular membrane contains lipids and proteins which were previously on the cell boundary, and furthermore the 
vesicle may enclose nutrients or other cargo. Endocytosis is thus a key process in transferring nutrients to the cell, regulating 
the expression of proteins on the cell surface, and cell homeostasis [13]. It involves nontrivial coupling between protein 
binding and unbinding reactions, in-plane lipid flow, and out-of-plane membrane shape changes. In particular, the in-plane 
flow and out-of-plane bending are coupled because lipid membranes are nearly area-incompressible [11] and therefore 
lipids are required to flow in-plane to accommodate any shape changes. In another example, lipid membranes can phase 
separate into liquid–ordered (Lo) and liquid–disordered (Ld) domains under physiological conditions [14]; the energetic 
penalty of the Lo–Ld interface plays a major role in the fusion of HIV-containing vesicles with target immune cells [15]. 
This phenomenon demonstrates the value in understanding the coupling between elastic membrane shape changes and the 
thermodynamically irreversible processes of in-plane lipid flow and in-plane species diffusion.

The interfacial materials discussed thus far are of fundamental importance to engineering and biology. Consequently, 
there have been significant theoretical efforts to better understand their physics. The pioneering work of L.E. Scriven [16] and 
R. Aris [17] was crucial to our current understanding of interfacial flows. In particular, Scriven recognized it is prohibitively 
difficult to use standard Cartesian, cylindrical, and spherical coordinate systems to solve for fluid flows on arbitrarily curved 
surfaces, where even expressing the surface Laplacian of the velocity field at every point on the surface is nontrivial. Con-
sequently, Scriven used a mathematically elegant differential geometric framework to naturally represent two-dimensional 
flows and their gradients on arbitrarily curved surfaces [16]. Subsequently, Aris worked to describe three-dimensional fluids 
using the machinery of differential geometry, and incorporated Scriven’s surface flow description within his general differ-
ential geometric perspective [17]. The powerful formalism developed by Scriven and Aris continue to be in widespread use 
today. An excellent review of the interfacial dynamics of fluid interfaces in multiphase systems is provided in Ref. [6], and 
for a wonderful perspective on interfaces in fluid mechanics see Ref. [18].

While the equations of motion characterizing two-dimensional interfacial flows on surfaces are now widespread and 
well-understood, theoretical developments for lipid membranes are in a less mature stage. A major complexity arises in 
modeling lipid membranes because they behave as in-plane fluids, out-of-plane elastic solids, and the surface on which 
dynamical equations are to be written is itself curved and deforming over time. Early membrane models were modifications 
of P.M. Naghdi’s seminal contributions to shell theory. However, while Naghdi used a balance law formulation [19], the 
first membrane models used variational methods and focused only on elastic membrane behavior. In particular, P. Canham 
[20] and W. Helfrich [21] proposed an elastic membrane bending energy in the early 1970’s; Helfrich also used variational 
methods to determine the Euler–Lagrange equations governing axisymmetric membrane shapes in the absence of in-plane 
flows. The Euler–Lagrange equations, which by construction include only thermodynamically reversible phenomena and 
thus do not contain viscous forces, were not extended to non-axisymmetric settings until 1999 [22]. However, by this time 
various other models which restricted membrane shapes to small deviations from flat planes [23–26] and cylindrical or 
spherical shells [26,27] had also emerged. Since then, variational methods encompassing different physical phenomena have 
continued to be developed [28–36]. In a parallel development, in-plane velocities were included in some models about 
simple geometries [26,34,37]. It was not until 2009, however, that the general equations governing a single-component, 
arbitrarily curved and deforming lipid membrane with in-plane viscosity were determined [38]—using a combination of 
variational methods to determine elastic contributions and the so-called Rayleigh dissipation potential to determine the 
viscous terms. Since then, variational methods have been extended, with viscous stresses sometimes included in an ad-hoc 
manner [39–41]. Membrane models have also recently been developed by building on the work of Naghdi [19] and using 
fundamental balance laws and associated constitutive equations [42–45].
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While such theoretical developments have had success in modeling certain membrane phenomena, they were difficult 
to extend to study how elastic out-of-plane membrane bending is coupled to different irreversible phenomena, such as 
in-plane lipid flow, in-plane phase transitions involving multiple components, and chemical reactions between membrane 
components and species in the surrounding bulk. Our recent work [46], inspired by the pioneering works of I. Prigogine 
[47], L. Onsager [48,49], and S.R. de Groot & P. Mazur [50], developed the general theory of irreversible thermodynamics for 
arbitrarily curved lipid membranes, provided a formalism to determine the equations governing membrane dynamics, and 
presented comprehensive models for all of the irreversible phenomena described thus far.

Though the equations governing both fluid interfaces and lipid membranes are now determined, the equations are highly 
nonlinear and in general cannot be solved analytically. Our work entails developing an ALE theory for two-dimensional 
materials with in-plane fluidity. The theory involves a surface discretization whose in-plane velocity can be (i) zero, as in an 
Eulerian formulation, (ii) equal to the in-plane material velocity, as in a Lagrangian formulation, or (iii) specified arbitrarily. 
The flexibility of our ALE theory, as well as its similarities to bulk methods of the same name [51], explain our nomenclature. 
With the ALE theory, we numerically solve the equations of motion governing the aforementioned materials of interest. We 
split this effort into two pieces: in Part I we derive the general ALE theory, develop its finite element formulation, and apply 
it to two-dimensional fluid films. In Part II we extend the finite element formulation to lipid membranes, which elastically 
resist out-of-plane bending, and present results from our numerical simulations.

The challenges in theoretically modeling deforming interfaces with in-plane flow, and lipid membranes especially, extend 
to their numerical modeling as well: to model a material with arbitrarily large shape deformations and in-plane flows, 
standard techniques from fluid mechanics and solid mechanics are insufficient. Regarding fluid films, many previous studies 
simplified the problem by assuming the film was fixed in space. The resultant fixed-surface flow equations, derived by 
Scriven [16], have been solved using various methods: by modeling the fluid interface as a level set in R3 [52], using 
a vorticity–stream function formulation [53], with surface finite element methods [54,55], and through the discretization 
of exterior calculus operators [56]. On the other hand, a different study using level set methods [57] made considerable 
advances in numerically modeling bubble deformation and breakup in foams, however they separated the dynamics into 
different steps and in each step made simplifying assumptions. In addition, interfaces have been modeled as the boundary 
between bulk fluid domains, using both ALE and level set techniques—however, such works are either restricted to simple 
geometries [58,59] or do not include in-plane interfacial flow [60–63]. ALE methods were also used to study the evolution of 
scalar fields on surfaces whose time evolution is known [64]. While the numerical methods discussed thus far have modeled 
different fluid film phenomena, they do not seem easily amenable to the study of general deforming fluid interfaces or lipid 
membranes, with the latter having their own constitutive behavior.

Just as in the case of fluid films, several lipid membrane studies assumed the membrane shape to be fixed, and under 
these conditions studied how surface flows are coupled to flows in the surrounding bulk in two cases: spherical surfaces 
with protein inclusions [65] and radial surfaces in a one-to-one correspondence with a sphere [66]. Alternatively, many 
of the studies modeling the deformation of lipid membranes [67–75] consider only the Euler–Lagrange equations, and 
thus predict membrane shapes without knowledge of the in-plane flow. However, as the in-plane flow and out-of-plane 
deformations are coupled through the in-plane viscosity [46], the predictions of the previously mentioned works are only 
physically relevant in the limit where velocities are negligible. Another approach has been to include in-plane fluid flow 
and limit the membrane to remain in one-to-one correspondence with a flat plane [42,44]. While such an approach is 
theoretically sound, it is limited in its use as it cannot, for example, model the large shape deformations observed in 
endocytosis [12]. Several recent works have avoided the computational complexity of modeling the full lipid membrane 
equations by assuming only axisymmetric shapes [45,76], however this turns out to be a poor assumption which in many 
cases yields incorrect results [77]. In our previous work we modeled the full non-axisymmetric membrane equations using 
a Lagrangian finite element method [77,78], which is computationally valid yet can attain locally singular Jacobians and 
uninvertible matrices when there are moderate in-plane flows. Lagrangian methods are thus not suitable for the study of 
general fluid and lipid membrane phenomena.

The limitations of our Lagrangian finite element formulation and other computational techniques in modeling fluid inter-
faces and lipid membranes motivate our development of an ALE finite element method for curved and deforming surfaces. 
The following aspects are new in this work: we

1. develop an ALE theory, within a differential geometric setting, for general arbitrarily curved and deforming two-
dimensional interfaces with in-plane flow,

2. apply the theory to two-dimensional fluid films and derive a corresponding isoparametric, fully implicit ALE finite ele-
ment method,

3. prevent numerical inf–sup instabilities associated with the in-plane areal incompressibility by adapting the method of 
C.R. Dohrmann and P.B. Bochev [79] to curved surfaces,

4. numerically simulate an arbitrarily curved and deforming fluid film, from which we find a physical instability that is 
confirmed analytically with a linear stability analysis, and

5. demonstrate how our ALE formulation can be altered to yield a Lagrangian scheme as a special case.

As mentioned earlier, we limit our numerical calculations to fluid films in this manuscript, as the extensions of the theory 
and numerical methods to lipid membranes will be presented in Part II [1]. We note Ref. [80] describes a concurrent effort 
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Fig. 1. A schematic of how the convected (a), surface-fixed (b), and ALE (c) surface coordinates evolve in time, for a side view of the surface. In all cases, 
the initial surface is represented with a dotted line, the final surface is represented by a solid line, and the circles represent nodes of constant coordinate 
values. (a) The convected coordinates ξα move along the direction of the material velocity (red arrows), and can squeeze together or spread apart. Moreover, 
when there are in-plane flows, elements can become highly distorted—leading to complications in numerical implementations, and singularities in extreme 
cases [77,78]. (b) The surface-fixed coordinates θα only move orthogonally to the surface (solid green arrows), and thus maintain regularity for arbitrarily 
large in-plane flows. However, as shown in the center of (b), in certain cases it is possible for the surface-fixed coordinates to squeeze together when 
the surface deforms. (c) The motion of the ALE coordinates ζα can be specified arbitrarily, provided the normal components of the material velocities 
(transparent red arrows) and mesh velocities (solid blue arrows) are equal, according to Eqs. (7) and (8)—or equivalently Eq. (12). Thus, a regular mesh can 
in principle always be maintained. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

with a similar objective. In particular, Ref. [80] also derives a general ALE theory. However, their numerical implementation is 
based on a surface parametrization involving small membrane deformations, generalized to arbitrarily curved surfaces, with 
periodic updates of the reference surface as required. Additionally, Ref. [80] uses a Hodge decomposition of the membrane 
velocity field, while the present work employs isoparametric finite element methods.

Our paper is organized as follows: In Sec. 2, we present our ALE theory for general two-dimensional interfaces. We pro-
vide the equations of motion governing arbitrarily curved and deforming fluid films in Sec. 3 and develop the corresponding 
finite element formulation in Sec. 4. Numerical results of an ALE implementation are presented in Sec. 5; the modifications 
leading to a pure Lagrangian formulation and corresponding results are provided in Sec. 6. We end with conclusions and 
avenues for future work in Sec. 7. Several of the more detailed calculations regarding fluid films and our finite element im-
plementation, as well as additional numerical benchmarks, are relegated to Appendices A–D. Relevant movies are provided 
in Appendix E, and important symbols are listed in Appendix F.

2. Arbitrary Lagrangian–Eulerian theory

While the equations of motion governing arbitrarily curved and deforming fluid films and lipid membranes were pre-
sented in Refs. [16,38,42,46], solving the resultant equations is nontrivial. These equations are highly nonlinear and cannot 
be solved analytically, yet many issues arise when trying to solve them numerically as well. We have described the short-
comings of our previous Lagrangian finite element formulation [77,78], which is not appropriate for materials with in-plane 
flow. Namely, when the surface is discretized and the corresponding mesh travels in-plane with the material, mesh elements 
become highly distorted and attain nearly singular Jacobians (see Fig. 1a). In such a case, a simple example of vortex flows 
is not possible. We therefore require a new numerical method to solve the equations of motion.

In this section, we derive an ALE theory for arbitrarily curved and deforming surfaces, which provides equations more 
amenable to numerical solution. In particular, we seek a description of the material surface which can be easily discretized, 
with individual elements not undergoing large distortions when material flows in-plane. To this end, we introduce an 
ALE parametrization of the two-dimensional material, which endows the surface with a mesh that deforms in the normal 
direction with the material—yet whose in-plane motion can be specified arbitrarily and need not depend on the material 
flow. We note Ref. [64] introduced a mesh evolving in a similar manner, for the study of scalar fields on evolving surfaces 
whose time evolution is prescribed. Our ALE description, on the other hand, introduces three new unknowns corresponding 
to the three components of the mesh velocity. In what follows, we discuss various parametrizations of the surface, and in the 
ALE case provide the additional three equations required for our problem to be mathematically well-posed. We also describe 
how the equations governing fluid films and lipid membranes, which are based on an Eulerian surface parametrization, are 
modified when the ALE parametrization is employed.

2.1. Surface geometry

As discussed in Refs. [42,46], an arbitrarily curved and deforming patch of surface P can be parametrized by either the 
convected coordinates ξα , which are attached to material points and are convected with the material, or the surface-fixed 
coordinates θα , which are defined such that a point of fixed θα moves only normal to the surface. Schematics of the 
movement of points of constant ξα and θα are provided in Figs. 1a and 1b, respectively. Here and from now on, we 
prescribe Greek indices to span the set {1, 2}, and use the Einstein summation convention in which Greek indices repeated 
in a subscript and superscript are summed over. As the material occupying a point of constant θα will in general change in 
time, we formally write θα = θα(ξβ, t) and express the position in terms of either surface-fixed or convected coordinates 
as

x(θα, t) = x(θα(ξβ, t), t) = x̂(ξβ, t) , (1)

where the ‘hat’ accent is used to denote the position expressed in terms of the ξα parametrization (see Fig. 2).
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Fig. 2. A schematic of the surface parametrizations. The three different parametric domains, for θα , ξα , and ζα , are shown respectively in green, red, and 
blue. The mappings from the parametric domains to the patch of surface P are depicted at a single instant in time t with solid, colored arrows. A single 
material point labeled by the convected coordinates ξβ has corresponding surface-fixed and mesh coordinates θα = θα(ξβ , t) and ζα = ζα(ξβ , t), as shown 
with the dashed gray arrows. Accordingly, the patch position is equivalently written as (see Eq. (3)) x = x̂(ξα, t) = x(θα, t) = x̌(ζα, t).

As discussed below, the θα parametrization yields a surface description which is in-plane Eulerian and out-of-plane 
Lagrangian, and is most natural to theoretically model lipid membranes—which are in-plane fluids and out-of-plane elastic 
solids. Consequently, our theoretical developments [46] used the surface-fixed parametrization throughout. We use the 
same notation in this work, and review it here. Partial and covariant differentiation with respect to θα are respectively 
denoted ( ),α and ( );α . The surface-fixed parametrization yields the in-plane basis vectors aα := x,α and unit normal 
n := (a1 × a2)/|a1 × a2|. The metric and curvature components are respectively given by aαβ := aα · aβ and bαβ := n · x,αβ , 
with which the mean and Gaussian curvatures are respectively calculated as H := 1

2 aαβbαβ and K := det(bαβ)/ det(aαβ). A 
comprehensive geometric description of the surface can be found in Ref. [46] and the references provided therein.

2.2. Surface kinematics

As a point of constant ξα follows a material point over time, the velocity v of a material point is defined as v :=
[∂ x̂/∂t]|ξβ , which upon substitution of Eq. (1) and application of the chain rule yields

v = ∂θα

∂t

∣∣∣
ξβ

∂x

∂θα
+ ∂x

∂t

∣∣∣
θα

= ∂θα

∂t

∣∣∣
ξβ

aα + ∂x

∂t

∣∣∣
θα

. (2)

At this point, the parametrization θα is defined such that the second term on the right-hand side of Eq. (2) lies entirely in 
the normal direction. In this case the normal component of the velocity, v = v · n, satisfies vn = [∂x/∂t]|θα —and a point of 
constant θα is unaffected by in-plane flow, as shown in Fig. 1b. We accordingly refer to θα as a surface-fixed parametriza-
tion. The in-plane contravariant velocity components vα are defined as vα := [∂θα/∂t]|ξβ , such that the velocity v can be 
written as v = vαaα + vn—indicating our definitions of the normal velocity v and contravariant velocity components vα

are consistent with the geometric description of the surface.
The two different parametrizations introduced thus far offer perspectives analogous to the familiar Lagrangian and Eu-

lerian formulations from standard continuum mechanics. A point of constant ξα is a material point, so the convected 
coordinates provide a Lagrangian perspective. A point of constant θα , on the other hand, is independent of the in-plane 
surface flow and so the surface-fixed coordinates provide an in-plane Eulerian perspective. The material time derivative is 
calculated as d( )/dt := [∂( )/∂t]|ξβ in the Lagrangian perspective, and as d/dt( ) = vα( ),α + ( ),t for scalar quantities in 
the in-plane Eulerian perspective, where the partial time derivative is defined as ( ),t := [∂( )/∂t]|θα . We often denote the 
material time derivative of a quantity with a dot over that quantity, as in v = ẋ or vα = θ̇α . By applying the material time 
derivative to the basis vectors aα and n, we find ȧα = v ,α and ṅ = −(aα ⊗ n) v ,α , where ⊗ denotes the dyadic or outer 
product. We calculate the material time derivatives of the metric and curvature components as ȧαβ = v ,α · aβ + v,β · aα

and ḃαβ = v;αβ · n. A more detailed description of the surface geometry and kinematics is provided in our past theoretical 
work [46].
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2.3. ALE description and geometry

Thus far, the convected coordinates ξα and surface-fixed coordinates θα were introduced to describe a surface with 
in-plane fluidity. Lagrangian numerical methods based on convected coordinates are conceptually simpler to develop, yet 
they cannot capture in-plane flows—which highly distort mesh elements, as discussed previously. Surface-fixed coordinates 
are most natural for a theoretical description of arbitrarily curved and deforming surfaces with in-plane fluidity, and their 
numerical implementation requires nodes to only move orthogonally to the surface (see Fig. 1b). A numerical method based 
on the θα parametrization can model arbitrarily large in-plane flows, yet in rare instances the discretized nodes move to-
wards one another as the surface deforms, also shown in Fig. 1b. In the spirit of formulating a completely general numerical 
method to describe evolving surfaces with in-plane fluidity, we begin by developing an ALE surface parametrization, denoted 
by the ALE coordinate ζα , which endows the surface with a mesh. The main idea is to define ζα such that the correspond-
ing mesh deforms out-of-plane with the material, while its in-plane motion can be specified arbitrarily (see Fig. 1c). We 
now describe how the geometric description introduced in Sec. 2.1 is modified when expressing quantities in terms of the 
ALE parametrization ζα .

In general, the material at any ALE coordinate ζα will change over time, as there is in-plane flow relative to the mesh, 
and the mapping from convected to ALE coordinates is expressed as ζα = ζα(ξβ, t). The surface position can be described 
equivalently with convected coordinates, surface-fixed coordinates, or the newly introduced ALE coordinates. To this end, 
any surface position x can be written as

x = x̂(ξα, t) = x(θα, t) = x̌(ζα, t) , (3)

where in the last equality and from now on a ‘check’ accent is used to denote the position expressed in terms of the ζα

parametrization (see Fig. 2).
Under a change of surface parametrization from θα to ζα , the latter of which can be specified arbitrarily, our geometric 

description of the surface is modified—as is any quantity with a Greek index. However, quantities transform in such a way 
that any variable without an index is invariant to the change in parametrization. Thus, for example, v and v are invariant 
quantities while vα and aαβ are not. As we will see, the continuity equation and vector form of the equations of motion 
contain no free indices, and can be expressed in terms of any surface parametrization—which shows the utility of our 
differential geometric developments and notation.

In this work, quantities are expressed in terms of the ζα parametrization by placing a ‘check’ accent over every Greek 
index, where checked and unchecked indices take the same value. For example, aα̌ := ∂ x̌/∂ζα = x̌,α̌ are the new in-plane 
basis vectors, aα̌β̌

:= aα̌ · a
β̌

are the new metric components, and bα̌β̌
:= n · x̌

,α̌β̌
are the new curvature components. In 

this manner, the ALE parametrization is used throughout the rest of this manuscript. We used a similar technique in our 
previous Lagrangian surface description [78], where we transitioned from the θα to the ξα parametrization. As all quantities 
in Ref. [78] were written in the ξα representation, all Greek indices should be interpreted as having a ‘hat’ accent to be 
consistent with our notation.

2.4. ALE kinematics

While the material velocity v is an invariant quantity, it is expressed differently for different surface parametrizations. 
For example, v := [∂ x̂/∂t]|ξβ for convected coordinates and v = vαaα + vn for surface-fixed coordinates (see Sec. 2.2). In 
this section, we characterize the kinematics of an arbitrarily curved and deforming surface when the surface is parametrized 
by the ALE coordinates ζα . Our developments mirror those of Sec. 2.2.

Using the mapping ζα = ζα(ξβ, t), any surface position can be written as

x̌(ζα, t) = x̌(ζα(ξβ, t), t) = x̂(ξβ, t) , (4)

which is analogous to Eq. (1). The velocity of a point, v = [∂ x̂/∂t]|ξβ , can be expressed in the ζα representation as

v = ∂ζα

∂t

∣∣∣
ξβ

∂ x̌

∂ζα
+ ∂ x̌

∂t

∣∣∣
ζα

= ∂ζα

∂t

∣∣∣
ξβ

aα̌ + ∂ x̌

∂t

∣∣∣
ζα

, (5)

where in the second equality we substituted aα̌ = x,α̌ . The last term in Eq. (5) describes how the position of a mesh point 
changes in time, which we denote the mesh velocity vm:

vm := ∂ x̌

∂t

∣∣∣
ζα

= x′ . (6)

In Eq. (6), the notation ( )′ := [∂( )/∂t]|ζα indicates how a quantity at a mesh point evolves in time. The partial time 
derivative ( )′ in the ALE parametrization is analogous to the partial time derivative ( ),t in the surface-fixed parametriza-
tion, as both describe how a quantity changes at a fixed value of the appropriate coordinates. Note the mesh velocity v m

need not be orthogonal to the surface, in contrast to its surface-fixed analog vn = [∂x/∂t]|θα (see Sec. 2.2). Defining
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cα̌ := ∂ζα

∂t

∣∣∣
ξβ

= ζ̇ α and c := cα̌aα̌ , (7)

and using Eq. (6), we express Eq. (5) as

v = c + vm . (8)

Equation (8) indicates that c is the relative velocity between the material and the mesh. Furthermore, since c · n = cα̌aα̌ ·
n and aα̌ · n = 0, Eq. (7)2 shows that the relative velocity lies entirely in the tangent plane to the surface, as shown 
schematically in Fig. 1c.

The material time derivative of any invariant quantity can be expressed in the ζα representation as

d

dt
( ) = ( )′ + cα̌ ( ),α̌ = ( )′ + (

v − vm) · aα̌ ( ),α̌ , (9)

where the relation cα̌ = (v − vm) · aα̌ , obtained from Eqs. (7)2 and (8), is used in the second equality. The acceleration of a 
point x is calculated using Eq. (9) as

v̇ = v ′ + cα̌ v ,α̌ = v ′ + (
v ,α̌ ⊗ aα̌

) (
v − vm) . (10)

Finally, in our simulations, the mesh velocity vm is treated as a fundamental unknown. The mesh position is calculated by 
integrating the mesh velocity over time, formally written as

x̌(ζα, t) = x̌(ζα, t0) +
t∫

t0

vm(ζα, t′) dt′ , (11)

where x̌(ζα, t0) is the initial mesh position at time t0.

2.5. Mesh velocity equations

With the introduction of three new unknowns, namely the three components of the mesh velocity vm, three additional 
governing equations are required for the problem to be mathematically well-posed. One equation is found by taking the dot 
product of Eq. (8) with the normal vector n and recognizing c · n = 0, yielding

vm · n = v · n , (12)

which ensures the mesh and the surface always overlap with one another as the surface deforms. In this sense, all schemes 
considered are out-of-plane Lagrangian.

The remaining two equations required to close the problem come from specifying the relative velocity c , or equivalently 
specifying the relationship between vm · aα̌ and v · aα̌ . There are no restrictions on how vm · aα̌ and v · aα̌ are related, so 
one can specify their relationship arbitrarily. If we were to choose vm · aα̌ = v · aα̌ , for example, we implicitly set ζα = ξα

and therefore recover a Lagrangian scheme in which the mesh velocity and material velocity coincide. If, on the other hand, 
we choose vm ·aα̌ = 0, we implicitly set ζα = θα and recover an in-plane Eulerian scheme in which the mesh moves only in 
the direction normal to the surface. The theoretical developments of this section allow us to specify v m · aα̌ , or equivalently 
ζα , arbitrarily as is best-suited to solve the problem at hand (see Fig. 1c). This flexibility is analogous to that of a Cartesian 
ALE formulation [51], and for this reason we name our scheme ‘arbitrary Lagrangian–Eulerian.’

For the majority of this manuscript we consider an out-of-plane Lagrangian, in-plane Eulerian scheme, for which the 
mesh velocity satisfies

vm · aα̌ = 0 , (13)

which from now on is called a Lagrangian–Eulerian (LE) scheme. As shown in Sec. 6, the LE implementation can be easily 
modified to produce a pure Lagrangian scheme. The analysis of more general mesh velocity descriptions is left to a future 
study, as care must be taken to avoid well-known ALE issues arising in the discretized equations—such as the violation of 
the geometric conservation law [81,82]. In the LE case, such issues do not arise, and one can condense the three constraints 
on the mesh velocity into a single vector equation, given by

vm = (n ⊗ n) v . (14)

Equation (14) provides the three equations necessary to resolve the LE mesh motion, and concludes our theoretical ALE 
surface description.
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3. Fluid film equations

The equations governing an arbitrarily curved and deforming fluid film can be obtained in the form presented below by 
starting with the lipid membrane equations of Ref. [46], obtained within the framework of irreversible thermodynamics, and 
setting the bending moduli to zero. Here and from now on, all equations are written in terms of the ALE parametrization 
by placing ‘check’ accents over all Greek indices, as described in the previous section.

3.1. Strong formulation

The continuity equation for an arbitrarily curved, incompressible two-dimensional material is given by

aα̌ · v ,α̌ = v α̌
;α̌ − 2 v H = 0 . (15)

Equation (15) is also called the incompressibility constraint and is enforced by the Lagrange multiplier λ = λ(ζα, t)—which 
is physically the surface tension of the material. The local form of the linear momentum balance is given by

ρ v̇ = ρb + T α̌
;α̌ , (16)

where ρ is the density, v̇ is the acceleration, b are the body forces, and T α̌ are the stress vectors, namely, the boundary 
tractions across curves of constant ζα . For fluid films, we find T α̌ = σ α̌β̌a

β̌
, where σ α̌β̌ are the in-plane stress components 

given by (see Appendix A.1 and Ref. [46] for more details)

σ α̌β̌ = λaα̌β̌ + πα̌β̌ . (17)

In Eq. (17), λ is the surface tension enforcing areal incompressibility (15) and πα̌β̌ are the in-plane viscous stresses. For an 
isotropic and incompressible fluid film, the viscous stresses are found to be

πα̌β̌ = ζ ȧμν aαμ aβν = ζ v,γ̌ · (aα̌ aγ̌ β̌ + aβ̌ aγ̌ α̌
)
, (18)

where ζ is the two-dimensional shear viscosity with units of force·time/length or equivalently mass/time.
To write the equations of motion in component form, we decompose the body force b in the {aα̌ , n} basis as b =

bα̌ aα̌ + p n, where bα̌ are the in-plane covariant components and p is the pressure drop across the surface. The in-plane 
equations of motion are given by

ρ v̇ · aα̌ = ρbα̌ + λ,α̌ + ζ
(

aβ̌γ̌ v α̌;β̌γ̌ + K v α̌ + 2 v,α̌ H − 2 v
,β̌

bβ̌

α̌
− 2 v H,α̌

)
, (19)

as shown in Appendix A.2. The left-hand side of Eq. (19) contains the inertial terms, while the right-hand side consists 
of the body forces, surface tension gradient, and divergence of the viscous stresses, respectively. The viscous forces clearly 
show the coupling between surface curvature and the in-plane and out-of-plane velocity components. Note Eq. (19) was 
obtained via other techniques in Refs. [83–86], in the context of stationary and time-evolving fluid surfaces.

The out-of-plane equation of motion, also called the shape equation, is found to be (see Appendix A.2)

ρ v̇ · n = p + 2λ H + ζ
(

2 bα̌β̌ v α̌;β̌ − 4 v
(
2H2 − K

))
. (20)

Equation (20) is an extension of the Young–Laplace equation to fluid films with nonzero velocity. Indeed, by setting v = 0, 
Eq. (20) simplifies to the familiar Young–Laplace equation, p + 2λH = 0. The presence of the in-plane fluid viscosity ζ and 
in-plane velocity components vα̌ in Eq. (20) leads to nontrivial coupling between the in-plane and out-of-plane equations 
when the surface is curved, i.e. when bα̌β̌

�= 0.
In our ALE formulation, the surface shape is evolved with the mesh velocity, rather than the material velocity, according 

to Eq. (11). As such, there are seven unknowns to solve for: three components of the material velocity v , three components 
of the mesh velocity vm, and the surface tension λ. The corresponding equations are the three components of the equation 
of motion (19) and (20), the three components of the mesh equation (14), and the incompressibility constraint (15). These 
seven equations constitute the strong formulation of the problem.

3.2. Boundary conditions

The decomposition of the equations of motion into in-plane and out-of-plane components allows us to determine possi-
ble boundary conditions. The first term in parenthesis on the right-hand side of Eq. (19), aβ̌γ̌ vα̌;β̌γ̌ , contains two derivatives 
of the in-plane velocity components vα̌ . As no higher derivative of vα̌ appears, we accordingly specify either Dirichlet or 
Neumann boundary conditions at every point on the patch boundary. In analogy to the boundary conditions of a bulk fluid 
in three dimensions, Dirichlet boundary conditions specify the in-plane velocity component vα̌ , while Neumann boundary 
conditions specify the in-plane boundary tractions T = σ α̌β̌ να̌ a ˇ , where να̌ = ν · aα̌ and ν is the in-plane unit normal 
β
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to the surface at its boundary [46]. Accordingly, the patch boundary ∂P is separated into a Dirichlet portion ∂vP and a 
Neumann portion ∂ tP , such that ∂vP ∩ ∂ tP = ∅ and ∂vP ∪ ∂ tP = ∂P . In this manuscript, only traction-free boundary 
conditions are considered, for which T = 0 on ∂ tP . General traction boundary conditions will be considered in Part II.

We next consider the shape equation (20), which describes the out-of-plane behavior of the fluid film and also provides 
an evolution equation for the position x through the normal velocity v . The shape equation contains two spatial derivatives 
of the position through the curvature components bα̌β̌ . Consequently, at each point on the boundary we specify either 
the normal velocity or its in-plane gradient along the ν direction, perpendicular to the surface boundary. These boundary 
conditions are independent of the in-plane boundary conditions, and in this manuscript we always specify the normal 
velocity of the patch boundary.

Our boundary conditions on the equations of motion are succinctly written as

v = v̄ on ∂vP and T = 0 , v = v̄ on ∂ tP , (21)

where v̄ is a known velocity on the boundary and v̄ is a known normal component of the velocity on the boundary. As the 
equations governing the mesh velocity (14) are algebraic equations which do not contain any derivatives, we do not specify 
any boundary conditions for the mesh velocity vm.

4. Finite element formulation for fluid films

In this section, we determine the weak formulation of the governing equations presented in Sec. 3.1, subject to the 
boundary conditions in Sec. 3.2. The weak form is modified to remove numerical inf–sup instabilities arising from the 
incompressibility of the fluid film, with a method inspired by Dohrmann and Bochev [79]. We provide the function spaces 
in which the solution to the weak formulation resides, and then use the standard tools of finite element analysis to find an 
approximate numerical solution to the weak form of the governing equations.

While inertial terms are included in the strong and weak formulations for completeness, they are not included in our 
simulations of arbitrarily curved and deforming fluid films—as they are negligible in many physical problems of interest. 
Despite the absence of inertia, the equations of motion are nonlinear due to the many terms involving the surface geometry. 
Furthermore, time derivatives still remain in the problem because the rate of change of the surface position is contained in 
the mesh velocity. The only simulation including inertial terms is the lid-driven cavity benchmark problem, in which the 
mesh is constrained to be fixed and inertia is included purely to demonstrate the validity of our numerical method.

4.1. Weak formulation

Here we derive the weak formulation of the strong form equations provided in Sec. 3.1, in similar fashion to Refs. [78,87]. 
Let V be the space of functions for the material velocity v and mesh velocity vm, and let � be the space of functions for 
the surface tension λ. We consider the arbitrary variations δv ∈ V0, δvm ∈ V , and δλ ∈ �, where all elements of V0 ⊂ V
vanish on the Dirichlet portion of the boundary. The variations are contracted with the appropriate strong form equations 
and integrated over the fluid surface to yield the weak formulation of the problem.

In our previous work [46], we presented surface integrals as being of the general form 
∫
P(. . .) da, where da is a 

differential areal element of the patch P . While such a description is theoretically sound, it is not amenable to numerical 
integration. We define � := {(ζ 1, ζ 2)} to be the space of all ALE coordinates ζα , shown in blue in Fig. 2, and map areal 
integrals to � according to∫

P

(
. . .
)

da =
∫
�

(
. . .
)

J m d� . (22)

In Eq. (22), d� := dζ 1 dζ 2 is a differential element of � and J m := √
det aα̌β̌

is the Jacobian determinant of the mapping 
x̌(ζα) : � → P . In a similar way, integrals over the patch boundary ∂P are mapped to integrals over the parametric domain 
boundary � := ∂� according to∫

∂P

(
. . .
)

ds =
∫
�

(
. . .
)

J m
� d� , (23)

where ds is a differential line element of the patch boundary ∂P , d� is a differential line element on the parametric domain 
boundary, and J m

� is the Jacobian determinant of the mapping x̌b(ζ
α) : � → ∂P—in which x̌b refers to the position of the 

patch boundary. The Dirichlet and Neumann portions of �, denoted �v and �t, map to the patch boundaries ∂vP and ∂ tP , 
respectively.

To obtain the weak formulation, we begin by contracting the equations of motion (16) with an arbitrary velocity variation 
δv ∈ V0 and integrating over the patch P to obtain
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∫
�

δv · ρ v̇ J m d� −
∫
�

δv · ρb J m d� −
∫
�

δv · T α̌
;α̌ J m d� = 0 ∀ δv ∈ V0 , (24)

where all integrals are mapped to � through Eq. (22). Note that in our previous Lagrangian formulation [77,78], we solved 
for the material position x and the weak form contained an arbitrary position variation δx. In this case, however, the 
in-plane fluidity necessitates the velocity v to be the fundamental unknown, such that the weak form is calculated with an 
arbitrary velocity variation δv . Applying the surface divergence theorem to the third term on the left-hand side in Eq. (24)
yields

−
∫
�

δv · T α̌
;α̌ J m d� =

∫
�

δv ,α̌ · T α̌ J m d� −
∫
�

δv · T J m
� d� , (25)

and the boundary integral is simplified by recognizing the velocity variation δv = 0 on �v by construction and T = 0 on �t

(21)2, such that

−
∫
�

δv · T α̌
;α̌ J m d� =

∫
�

δv ,α̌ · T α̌ J m d� . (26)

Substituting Eq. (26) into Eq. (24) and recognizing T α̌ = σ α̌β̌a
β̌

, with σ α̌β̌ given by Eq. (17), we obtain

Gv :=
∫
�

δv · ρ v̇ J m d� +
∫
�

δv ,α̌ · πα̌β̌ a
β̌

J m d�

+
∫
�

δv,α̌ · aα̌ λ J m d� −
∫
�

δv · ρb J m d� = 0 ∀ δv ∈ V0 .

(27)

The weak form of the mesh equation is found by contracting Eq. (14) with an arbitrary mesh velocity variation δvm, 
multiplying by a constant αm, and integrating over the surface, which yields

Gm := αm
∫
�

δvm ·
[

vm − (n ⊗ n
)

v
]

J m d� = 0 ∀ δvm ∈ V . (28)

The factor αm is introduced such that Gm has units of power, in agreement with Gv (27). In our simulations, αm is set 
to unity. While Eq. (28) corresponds to the LE mesh equation (14), a different mesh equation can be used in our ALE 
formulation by setting Gm to be the corresponding weak form expression.

Finally, as λ is the Lagrange multiplier corresponding to the incompressibility constraint (15), we multiply Eq. (15) by an 
arbitrary variation δλ ∈ � and integrate over the patch to obtain

Gλ :=
∫
�

δλ
(
aα̌ · v ,α̌

)
J m d� = 0 ∀ δλ ∈ � . (29)

Eqs. (27)–(29) are the weak forms corresponding to the strong forms given respectively by Eqs. (16), (14), and (15). By 
summing them together and introducing a shorthand for the vector of unknowns, u, as uT := (vT, (vm)T, λ)T, its variation 
δu as δuT := (δvT, (δvm)T, δλ)T, and the space of arbitrary variations U0 as U0 := V0 × V × �, we obtain the overall weak 
formulation, given by∫

�

δv · ρ v̇ J m d� +
∫
�

δv ,α̌ · πα̌β̌ a
β̌

J m d� +
∫
�

δv ,α̌ · aα̌ λ J m d� −
∫
�

δv · ρb J m d�

+ αm
∫
�

δvm ·
[

vm − (n ⊗ n
)

v
]

J m d� +
∫
�

δλ
(
aα̌ · v,α̌

)
J m d�

= 0 ∀ δu ∈ U0 . (30)

Note the weak form is nonlinear due to the out-of-plane deformations of the fluid film, as well as the inertial terms. 
Introducing G as the direct Galerkin expression [88] corresponding to the left-hand side of Eq. (30), the weak form can be 
compactly written as

G
(
u(ζα, t), δu(ζα)

) := Gv + Gm + Gλ = 0 ∀ δu ∈ U0 . (31)
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4.2. Solution spaces

With the weak formulation (30), in what follows, we define the infinite-dimensional spaces in which the surface tension 
λ, velocity v , and mesh velocity vm reside.

Surface tension solution space The surface tension λ enters the weak form (30) without any gradients, and so we require λ
only to be square-integrable. We define the space of all possible surface tension fields, �, as the space of square-integrable 
functions on the parametric domain �, denoted L2(�). Thus, � is given by

� = L2(�) :=
{

u(ζα): � →R such that
(∫

�
u2 d�

)1/2
< ∞

}
. (32)

Velocity solution space The weak formulation (30) contains a gradient of both the velocity variation δv and the material 
velocity v , the latter of which is contained in the viscous stresses πα̌β̌ (18). The velocity and velocity variation are both 
elements of the space of functions V , and so elements of V are required to be square-integrable and have square-integrable 
gradients in order for the weak formulation to remain bounded. Furthermore, as the lipid membrane weak form requires 
the second derivatives of elements of V to be square-integrable, we define the space of velocities V as

V := (H2(�)
)3

. (33)

Each of the three Cartesian components of the velocity lies in H2(�): the Sobolev space of order two on �, defined as

H2(�) :=
{

u(ζα): � →R such that u ∈ L2(�) , u,α̌ ∈ L2(�) , u
,α̌β̌

∈ L2(�)
}

. (34)

We also define V0 as the space of functions in V which vanish on �v, written as

V0 :=
{

u(ζα): � →R3 such that u ∈ V , u
∣∣
�v = 0

}
, (35)

such that δv ∈ V0.

Mesh velocity solution space The weak formulation (30) contains terms involving the gradient of both the velocity variation 
δv and the mesh velocity vm. While the mesh velocity gradient is not easily recognized in Eq. (30), it is found once the 
weak form is linearized and discretized (see Eq. (C.25)). As a result, we require vm ∈ V in order for the weak form to remain 
bounded.

4.3. Finite-dimensional subspaces

We now choose the finite-dimensional subspaces in which we seek vh , vm
h , and λh , which are approximations of the 

true solutions v , vm, and λ, respectively. The approximate surface position xh is chosen to lie in the same subspace as vh , 
as is standard in isoparametric finite element methods [89]. To this end, we discretize � into ne (number of elements) 
non-overlapping elements {�1, �2, . . . , �ne}, such that � = ∪ ne

e=1 �e and � j ∩ �k = ∅ for j �= k. In all cases considered 
the parametric domain is discretized with a rectangular grid, as required by our choice of basis functions (see Sec. 4.5), 
such that all elements have the same dimensions—which is denoted h. The partitioning of the parametric domain naturally 
leads to finite-dimensional subspaces in which functions are polynomials over single elements and have certain continuity 
requirements across element boundaries.

The finite-dimensional subspace of velocities, Vh ⊂ V , is defined as

Vh :=
{

u(ζα): � →R3 such that u ∈ (C1(�)
)3 ∩ V , u

∣∣
�e ∈ (Q2(�

e)
)3 ∀ �e

}
, (36)

where Cm(�) denotes the space of scalar functions on � with at least m continuous derivatives, and Qn(�e) is the space 
of bi-polynomial functions of order n on the parametric element �e . Accordingly, Vh is the space of piecewise bi-quadratic 
functions with continuous first derivatives over the entire domain �. While in the present formulation for fluid films, first 
derivatives need not be continuous, they are required to be continuous when modeling more complex systems which resist 
bending, such as lipid membranes [78] and viscoelastic Kirchhoff–Love shells [90]. We define the subspace V0,h ⊂ V0 to be 
the space of functions in Vh which are also zero on �v, formally written as

V0,h := Vh ∩ V0 . (37)

In the finite element analysis of bulk fluids, it is well-known that choosing the Lagrange multiplier space to be of the 
same polynomial order as the velocity leads to an unstable matrix equation, an issue resulting from the inf–sup condition, 
also called the Ladyzhenskaya–Babuška–Brezzi (LBB) condition [91–93]. We refer the reader to Ref. [94] for an excellent 
analysis of this numerical instability, which is often avoided in practice by choosing the Lagrange multiplier basis functions 
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to be one polynomial order lower than the velocity basis functions. As we chose our velocities to be piecewise bi-quadratic 
functions on � (36), the Lagrange multiplier subspace is accordingly chosen to be continuous, piecewise bi-linear functions 
on �, written as

�h :=
{

u(ζα): � →R such that u ∈ C0(�) ∩ � , u
∣∣
�e ∈Q1(�

e) ∀ �e
}

. (38)

Even with this choice of basis functions, our scheme is LBB-unstable. As a result, we invoke a projection method devised by 
Dohrmann and Bochev [79], as described below, to further stabilize our numerical method.

4.4. Inf–sup stabilization

In modeling fluids with finite element methods, it is well-known that LBB errors arise when the velocity and surface 
tension solution spaces are identical. We initially used bi-quadratic velocities and bi-linear surface tensions (32)–(34), which 
were successfully used in our previous work [77,78]. However, in the present study our numerical scheme exhibited LBB 
instabilities (see Appendix B.6.1). Further inspection showed our past work may have unknowingly avoided such instabilities 
by prescribing the surface tension along the entire boundary. In the spirit of developing a completely general finite element 
formulation, we seek to modify the numerical method presented thus far to remove the LBB instability.

We note there are many techniques to overcome the LBB instability, for example (i) using lower-order shape functions 
for the Lagrange multipliers [95], (ii) reduced and selective integration of the Lagrange multiplier equations [96,97], (iii) 
stabilization methods [98], and (iv) macroelement approaches [99,100]. All of these methods are valid in different cases. 
In this section, we describe how our weak form is modified by a technique developed by Dohrmann and Bochev [79] to 
remove LBB instabilities given general polynomial spaces for the velocity and surface tension; the analysis of other methods 
is left to a future study. The main idea underlying the Dohrmann–Bochev method is to locally project the surface tension 
onto a space of discontinuous, piecewise linear functions, and to energetically penalize the difference between the projected 
and unprojected surface tensions. The Dohrmann–Bochev method is thus based on two equations: one which projects the 
surface tension, and another which penalizes surface tension deviations from the projected space in a manner suitable for 
finite element analysis. A thorough description of the Dohrmann–Bochev method is provided in Ref. [89], and we follow 
their notation in this manuscript. The details of our numerical implementation can be found in Appendix B.6.

4.4.1. Theory
We begin by specifying the space of piecewise linear, discontinuous basis functions �̆ onto which the surface tension is 

projected, given by

�̆ :=
{

u(ζα): � →R such that u
∣∣
�e ∈ P1(�

e) ∀ �e
}

, (39)

where Pn(�e) is the space of polynomial functions of order n on the parametric element �e . Note that while piecewise 
bi-linear functions can be continuous on quadrilateral elements (38), piecewise linear functions cannot be. Accordingly, the 
space �̆ is discontinuous and over a single element �e : �̆

∣∣
�e =P1(�

e).

We next introduce the projection of the surface tension and its arbitrary variation, denoted λ̆ and δλ̆, respectively, such 
that λ̆, δλ̆ ∈ �̆. The L2-projection of the surface tension, λ̆, is defined by∫

�

δλ̆
(
λ − λ̆

)
d� = 0 ∀ δλ̆ ∈ �̆ . (40)

As δλ̆ belongs to a space of linear functions which are discontinuous across elements, Eq. (40) can be considered separately 
for individual elements �e , and is equivalently expressed as∫

�e

δλ̆
(
λ − λ̆

)
d� = 0 ∀ δλ̆ ∈ P1(�

e), ∀ �e . (41)

Deviations between λ̆ and λ are penalized in the weak form by subtracting the term

GDB := αDB

ζ

∫
�

(
δλ − δλ̆

) (
λ − λ̆

)
d� (42)

from the left-hand side of Eq. (30). In Eq. (42), ζ is the two-dimensional fluid shear viscosity and αDB is a computational 
parameter having units of J m which, as in Ref. [79], is chosen to be unity. The units of αDB ensure that Eq. (42) is dimen-
sionally consistent with the other terms in the weak form (30). The weak formulation is now given by
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∫
�

δv · ρ v̇ J m d� +
∫
�

δv ,α̌ · πα̌β̌ a
β̌

J m d� +
∫
�

δv,α̌ · aα̌ λ J m d� −
∫
�

δv · ρb J m d�

+ αm
∫
�

δvm ·
[

vm − (n ⊗ n
)

v
]

J m d� +
∫
�

δλ
(
aα̌ · v,α̌

)
J m d� − αDB

ζ

∫
�

(
δλ − δλ̆

) (
λ − λ̆

)
d�

= 0 ∀ δu ∈ U0 , (43)

and the direct Galerkin expression G in Eq. (31) is redefined such that

G
(
u(ζα, t), δu(ζα)

) := Gv + Gm + Gλ − GDB = 0 ∀ δu ∈ U0 . (44)

We provide the details of our Dohrmann–Bochev implementation in Appendix B.6, within which Appendix B.6.1 demon-
strates the success of this method.

4.5. Summary of numerical solution method

At this point, we seek an approximate solution to the weak formulation, as presented in Eqs. (43) and (44). To this end, 
we discretize the fundamental unknowns and their arbitrary variations. We then obtain the residual equations, discretize 
them temporally, and solve the resulting equations via Newton–Raphson iteration. Our techniques are briefly summarized 
here, however, extensive details of our numerical implementation are provided in Appendix B.

We first introduce the basis functions {NI (ζ
α)} and Lagrange multiplier basis functions {N̄ J (ζ

α)} such that Vh =
(span {NI (ζ

α)})3, and �h = span {N̄ J (ζ
α)}. The fundamental unknowns are discretized as

vh(ζ
α, t) = [N] [v(t)] , vm

h (ζα, t) = [N] [vm(t)] , and λh(ζ
α, t) = [N̄] [λ̄(t)] , (45)

where [N] and [N̄] are shape function matrices and [v(t)], [vm(t)], and [λ̄(t)] are the velocity, mesh velocity, and surface 
tension degree of freedom vectors, respectively. We introduce the shorthand [u(t)] = ([v(t)]T, [vm(t)]T, [λ̄(t)]T)T as the col-
lection of all degrees of freedom in the discretized system. The arbitrary variations δv , δvm, and δλ are discretized with the 
same basis functions as

δv(ζα) = [N] [δv] , δvm(ζα) = [N] [δvm] , and δλ(ζα) = [N̄] [δλ̄] , (46)

according to a Bubnov–Galerkin approximation, with [δv], [δvm], and [δλ̄] collectively gathered into [δu]. The weak formu-
lation (44) can then be written as [δu]T[r(t)] = 0 for all [δu], which is satisfied when the residual vector

[r(t)] := ∂G
∂[δu] = [0] . (47)

To solve Eq. (47) at a set of N discrete times {t1, t2, . . . , tN}, we assume [u(tn)] is known and solve for [u(tn+1)] := [u(tn)] +
[�u(tn+1)] according to the Newton–Raphson method. Again, a detailed description of our numerical procedure is provided 
in Appendix B.

In our implementation, the spaces Vh (36) and V0,h (37) involve C1-continuous basis functions. We maintain basis func-
tion continuity across elements by using uniform B-spline basis functions, which have the advantage of naturally enforcing 
arbitrary continuity requirements yet the complication of non-interpolatory basis function coefficients, and the requirement 
of a rectangular parametric mesh, as well as basis functions spreading over multiple elements. The method of using B-spline 
basis functions within an isoparametric finite element framework is in the spirit of Ref. [101], and detailed in Ref. [102]. We 
use the algorithms described in Ref. [103] to efficiently calculate the basis functions and their derivatives.

We have now concluded our discussion of the LE finite element formulation, and a high-level overview of our code 
structure can be found in Algorithm 1 of Appendix C.6.

5. Numerical simulations

We now present several results from our LE finite element formulation to validate the robustness of the method and 
demonstrate its capabilities. The numerical implementation of the method is tested with problems of increasing complexity, 
and results are compared to known analytical solutions whenever possible. The first test cases involve fluid flows on flat 
planes, and once several cases are validated we move on to study fluid flows on fixed, curved surfaces. In the scenarios 
mentioned thus far, the mesh is constrained to remain stationary and the mesh velocity is not solved for. In our last 
example, the entire LE implementation is tested by modeling an initially cylindrical fluid film, which is allowed to deform 
over time. The simulations show that fluid films are unstable with respect to long wavelength perturbations, which may 
explain why bubbles are often observed and long, cylindrical fluid films are not. Namely, in any experimental system, we 
expect the latter to break up and form bubbles. A linear stability analysis is performed to calculate the critical length above 
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which the cylinder becomes unstable, as well as the time scale of the instability. We show that the analytical predictions 
for the critical length and the time scale of the fastest growing unstable mode agree quantitatively with our simulation 
results. Moreover, we find both theoretically and computationally that cylindrical fluid films are stable to non-axisymmetric 
perturbations.

5.1. Fluid flow on a flat plane

We first consider the simplest test case, fluid flowing on a flat plane, for which the surface tension can be equivalently 
thought of as the negative surface pressure and the governing equations simplify to the two-dimensional incompressible 
Navier–Stokes equations (see Appendix A.2.1). While the problems considered in this section are easily solved using standard 
Cartesian finite element methods, we solve them using our nonlinear isoparametric finite element framework, in which 
differential geometry is used to express the surface position and fundamental unknowns in terms of curvilinear coordinates. 
Thus, even these simple problems serve as important benchmarks for our LE finite element implementation.

In our simulation of fluid flow on a flat plane, the mesh is constrained to be fixed, such that v m = 0, and we do not 
solve for the mesh velocity. Furthermore, as the mesh is flat, there is no motion in the out-of-plane direction and we solve 
only for the x- and y-components of the fluid velocity as well as the surface tension. The three corresponding strong form 
equations are the continuity equation (15) and the two in-plane Navier–Stokes equations (A.22)3. We simulate five scenarios 
with increasingly complex solutions: (i) a hydrostatic fluid, with zero velocity and linear surface tension; (ii) Couette flow 
between parallel plates, with linear velocity and zero surface tension; (iii) Couette flow between parallel plates under the 
influence of a quadratic body force, with linear velocity and cubic surface tension; (iv) Hagen–Poiseuille flow in a channel, 
with quadratic velocity and linear surface tension; and finally (v) the lid-driven cavity problem, for which no analytical 
solution is known. Only the lid-driven cavity result is discussed in the main text, and the validation of the first four cases 
against analytical solutions is left to Appendix D.

For the numerical results presented in this manuscript, we neglect inertial terms in all cases except the lid-driven cavity, 
for which inertial terms are evaluated using a backwards Euler temporal discretization. The contribution of inertial terms to 
the tangent matrix and residual vector, for the limited case of a fixed surface, is provided in Appendix C.3.1. Inertial terms 
are included in the lid-driven cavity problem only to further validate our numerical implementation with flows at moderate 
Reynolds numbers.

5.1.1. Lid-driven cavity
A schematic of the problem is shown in Fig. 3a. Fluid in a square cavity with stationary walls is driven by a top lid 

which moves to the right at constant speed V . We solve for the flow field and surface tension in the cavity, which is 
taken to be a unit square in the x–y plane. The boundary condition v = 0 is imposed on the sides and bottom of the 
square domain, and v = V ex is set on the top edge. There is a choice in what velocity to specify at the top two corners 
of the domain where the stationary edges meet the moving top lid. At these locations we set v = 0, as done in Ref. [104]. 
Furthermore, as only gradients of the surface tension enter the equations governing a flat, two-dimensional fluid, the surface 
tension λ is indeterminate up to a constant. Consequently, λ is specified to be zero at the center of the domain, located at 
(x, y) = (0.5, 0.5).

We first set the inertial terms to zero and solve for the Stokes flow result at Reynolds number Re := ρ V L/ζ = 0, for 
which the x-velocity is plotted in Fig. 3b. The flow field is moving towards the right at the top of the domain, and the 
presence of the right wall requires the fluid to be recirculated towards the left side in the bulk of the domain. We then 
include inertial terms and set Re = 100 by setting ρ = 1 and ζ = 0.01 (we already have V = 1 and L = 1). The corresponding 
x-velocity is plotted in Fig. 3c. Relative to Fig. 3b, Fig. 3c shows that at the top of the domain, inertia pulls the fluid to the 
right in the direction of the moving top lid. In Figs. 3d and 3e, the x-velocity and surface tension are plotted at different Re
across a vertical cross-section through the domain. Our results for the lid-driven cavity problem agree with those of other 
numerical studies [105,106], as plotted in Fig. 3d.

Our final task for the lid-driven cavity problem is to analyze how our simulations converge to the true solution as we 
increase the number of elements. We consider the case with no inertia, i.e. Re = 0, and calculate the error as a function of 
the length (and width) of a single element, denoted h. As the exact solution is unknown, we treat the solution on the finest, 
256 × 256 mesh as the true solution. We calculate the L2-error for the velocity, denoted ||v − vh||0 and defined as

∣∣∣∣v − vh
∣∣∣∣

0 :=
(∫

�

|v − vh|2 d�

)1/2

, (48)

where v is the true velocity and vh is the approximate velocity found on coarser meshes with elements of size h × h. The 
L2-error is denoted with a subscript ‘0’ because L2(�) = H0(�), i.e. the Sobolev space of order zero. A plot of ||v − vh||0 as 
a function of 1/h is shown in Fig. 3f, in which we see a linear scaling of the L2-error with the mesh size h. The numerical 
treatment of the corner nodes may explain why our simulations do not converge faster: at each mesh size, we set v = 0 at 
the corner nodes and v = V ez at the adjacent nodes on the top edge, however, as the number of elements increases, these 
two nodes move closer together such that we solve a slightly different problem at each mesh size.
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Fig. 3. Lid-driven cavity problem. (a) Schematic of the problem, in which fluid in a cavity (shown in white) of unit height and width is surrounded on three 
sides by rigid walls. The lid of the cavity is dragged to the right at constant speed V , such that at the top edge the fluid travels towards the right with the 
same speed. In all numerical calculations, we set V = 1. (b),(c) Plots of the x-velocity throughout the domain, on a 128 × 128 mesh, at Reynolds number 
Re = 0 (b) and Re = 100 (c). In both cases, fluid flows to the right at the top of the domain and then recirculates to the left in the center. When Re = 100, 
the fluid is pulled more towards the top right corner of the domain. The outer contour line shows where vx = 0, and the inner contour depicts where 
vx = −0.12. (d),(e) Plots of the x-velocity (d) and surface tension (e) on a 128 × 128 mesh at the vertical cross section x = 0.5. (d) The x-velocities in our 
simulations (solid lines) agree with Ref. [105] (red circles) at Re = 0, and Ref. [106] (black squares, blue triangles) at Re = 100 and Re = 400, respectively. 
(e) The surface tension has small differences for Re = 0, 100, and 400. The point where the three lines meet is the center of the domain, (x, y) = (0.5, 0.5), 
where we set λ = 0. (f) Plot of the velocity L2-error as a function of the element width h, for Re = 0. As no exact solution is known, we calculate the error 
relative to the solution on a 256 × 256 mesh. Data is shown in blue; the dashed red line is a reference with slope −1 to show the scaling of the error.

Due to the moving top lid being in contact with the stationary walls at the top two corners of the domain, the lid-
driven cavity solution is known to have large surface tension spikes at the corners [104]. For this reason, numerical studies 
generally use meshes which are very finely discretized at the corners. We find the surface tension spikes vary significantly 
with the mesh size, for example, on a 16 × 16 mesh λ is O(102) at the corners while on a 128 × 128 mesh it is O(103). 
These spikes dominate the error calculation, which even on the 128 × 128 mesh is O(1) relative to the solution on a 
256 × 256 mesh. The surface tension spikes are plotted in Appendix B.6.1, in which the success of the Dohrmann–Bochev 
method in removing inf–sup instabilities is also shown. As the surface tension error does not converge in this situation, in 
Appendix D.3 we show how it converges in the benchmark problem of Couette flow with a body force.

With the numerical results provided thus far, as well as those of Appendix D, we conclude our analysis of fluid flow 
on a fixed, flat plane. Our general ALE finite element framework, based on a curvilinear coordinate description via the 
machinery of differential geometry, has successfully reproduced the classical benchmarks of hydrostatic flow, Couette flow, 
Hagen–Poiseuille flow, and lid-driven cavity flow. We are therefore confident our finite element method can model arbitrary 
flows on flat surfaces.

5.2. Fluid flow on a stationary, curved surface

After testing our code on the simplest case of fluid flow on a flat plane, we turn to study fluid flows on stationary, 
curved surfaces. In such problems the mesh is fixed, and thus once again the mesh velocities are not solved for. However, 
a complication arises because for a fixed surface, the normal component of the material velocity v = v · n = 0. In practice, 
there are two ways we could handle this problem. First, we could posit that our arbitrary velocity variation δv = δvα̌aα̌ , 
where aα̌ is known for the fixed surface. However, such a method cannot be easily extended to model a deforming fluid 
film: when the surface is deforming, the velocity v is represented as v = vα̌aα̌ + vn, and in a fully implicit numerical 
scheme vα̌ , aα̌ , v , and n are all unknown.

We employ a different approach by representing the velocity and its arbitrary variation in a Cartesian basis, including 
both the in-plane and shape equations in our weak formulation, and enforcing v = v · n = 0 with a Lagrange multiplier—
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which is interpreted physically as the pressure drop required to constrain the fluid to the surface. In this section, we describe 
how both the strong and weak formulations are modified by the normal pressure p being an unknown Lagrange multiplier 
field. Our method is then tested by modeling fluid flow on a fixed, bulged cylinder. Numerical results are compared with 
analytical solutions, and we calculate how our numerical error decreases on mesh refinement.

5.2.1. Strong form modification
In satisfying the constraint v = 0 with a Lagrange multiplier, we include the shape equation (20) in our description of 

the fluid film. In the shape equation (20), the pressure drop p is an unknown Lagrange multiplier field, which at every 
point on the surface takes the requisite value to satisfy v = 0. There are thus five unknowns: the three components of the 
velocity, the surface tension, and the normal pressure drop, and five corresponding equations: the continuity equation (15), 
the two in-plane equations (19), the shape equation (20), and the constraint v = 0.

5.2.2. Weak form modification
With the pressure drop p being a fundamental unknown, the arbitrary pressure variation δp is expected to enter the 

weak formulation. To understand how δp will appear, we take the variation of the virtual work associated with moving the 
fluid film in the normal direction and obtain

δ

(∫
�

v · p n J m d�

)
=
∫
�

δv · p n J m d� +
∫
�

v · δp n J m d� . (49)

The first term on the right-hand side of Eq. (49) is already contained in Eq. (43) through the body force term. Assuming 
no in-plane body forces (bα̌ = 0), treating the pressure p as a fundamental unknown, again recognizing inertia is negligible, 
and removing mesh velocity degrees of freedom yields a modified weak form (cf. Eq. (43))∫

�

δv,α̌ · πα̌β̌ a
β̌

J m d� +
∫
�

δv ,α̌ · aα̌ λ J m d� +
∫
�

δλ
(
aα̌ · v ,α̌

)
J m d�

−
∫
�

δv · p n J m d� −
∫
�

δp v · n J m d� − αDB

ζ

∫
�

(
δλ − δλ̆

) (
λ − λ̆

)
d�

= 0 ∀ δv ∈ V0, δp ∈ P, δλ ∈ � ,

(50)

where P is the space of pressure solutions and arbitrary pressure variations. The weak form (50) contains no gradients 
of pressure and thus it is theoretically sound for us to choose P as the space of square-integrable functions on �, i.e. 
L2(�). However, we simplify our finite element analysis by using the same basis functions for the velocity and pressure. In 
accordance with Eqs. (33) and (34), we define

P := H2(�) . (51)

The structure of Eq. (50) indicates the pressure variation δp enforces the normal constraint v · n = 0, in the same way 
the surface tension variation δλ enforces the incompressibility constraint aα̌ · v,α̌ = 0. With the weak formulation (50), an 
identical procedure to that of Sec. 4 is followed to linearize and discretize the equation, calculate the tangent matrix and 
residual vector, and then iteratively solve for the unknowns via Newton–Raphson iteration. The approximate pressure ph is 
an element of the finite-dimensional subspace Ph ⊂P , which is chosen to be

Ph :=
{

u(ζα): � →R such that u ∈ C1(�) ∩P , u
∣∣
�e ∈ Q2(�

e) ∀ �e
}

(52)

in accordance with the finite-dimensional space of velocities Vh (36). The pressure can then be expressed in terms of 
the same set of basis functions, {NI (ζ

α)}, used for the velocities. As mentioned previously, our choice of P (51) and Ph
(52) is purely for convenience in our numerical implementation. The details of the modifications to our finite element 
implementation are provided in Appendix C.3.

5.2.3. Flow on a fixed cylinder with a bulge
In our numerical implementation, we consider fluid flowing on a fixed, bulged cylinder, as shown in Figs. 4a–4c. Our 

boundary conditions are shown schematically in Fig. 4a, where constant inflow and outflow of the fluid is prescribed at the 
entrance and exit of the cylinder, respectively. The surface tension is specified at a single point on the boundary, as only 
gradients of λ enter the in-plane equations. The bulge in the center leads to nontrivial velocity and surface tension profiles 
due to the coupling between curvature and fluid flow, and the symmetry of the surface shape allows us to determine the 
analytical solution (see Appendix A.2.3). The bulged cylinder thus serves as a useful benchmark problem for our numerical 
method, in the study of flows on curved yet fixed surfaces.
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Fig. 4. Fluid flow on a fixed cylinder with a bulge. (a) Schematic of the problem. Fluid enters at the left edge at velocity V ez and exits at the right edge 
at the same velocity. The surface tension λ is specified to be unity at a single point on the boundary. In the numerical calculation, no assumption about 
axisymmetry is made. (b) Radius as a function of axial position, with a 4% bulge in the central region. (c) A coarse 10 × 10 mesh of the bulged cylinder. 
(d–f) Plots of the surface tension (d), z-velocity (e), and normal pressure (f) as a function of axial position. We plot the deviation in these quantities from 
their analytical value at the left edge of the cylinder (z = 0), with axes scaled for convenience. The solid red lines are the analytical solutions and the 
dashed blue lines are our numerical results. Calculations were made on a 128 × 128 mesh. (g)–(i) Plots of the L2-error according to Eq. (48), relative to 
the analytical solution, as we change the number of elements. In (g), we refine in both the z and θ directions, such that there are the same number of 
elements in each direction. In (h), there are 128 θ -elements and the number of z-elements varies from 8 to 128 in powers of two. In (i), there are 128 
z-elements and between 8 and 128 θ -elements, again in powers of two. In (c)–(i), the length L = 4, 000 is chosen for analytical solutions to be sufficiently 
smooth (see Appendix A.2.3).

The position of the bulged, cylindrical surface is given by

x(θ, z) = r(z) er(θ) + z ez , (53)

where θ and z are the polar angle and axial distance, respectively, of a standard cylindrical coordinate system. The radius 
r(z) is independent of θ because the surface is axisymmetric. Our choice of radial profile is given in Appendix A.2.3 and 
shown in Fig. 4b. We define hθ and hz as the width of an element �e in the θ and z directions, respectively, and denote 
a mesh with 16 elements in the θ -direction and 32 elements in the z-direction, for example, as a 16 × 32 mesh. A coarse 
10 × 10 mesh of the bulged cylinder is shown in Fig. 4c. The surface tension, z-velocity, and normal pressure are calculated 
numerically on a 128 × 128 mesh, and compared to their analytical counterparts in Figs. 4d–4f, respectively. In all cases, our 
numerical results show excellent agreement with the analytical calculations.

We conclude our analysis of the fixed, bulged cylinder by calculating the L2-error of the velocity, surface tension, and 
normal pressure. We also calculate the error between our numerical surface position xh and the true position x given in 
Eq. (53), which is a function of how closely our basis functions can represent the analytical geometry. Figs. 4g–4i show 
three different plots of the error: changing hθ and hz together (4g), changing hz with fixed hθ (4h), and changing hθ with 
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fixed hz (4i). Figs. 4g and 4h are nearly identical, indicating θ -refinement has little effect on the errors, an observation 
which is confirmed with Fig. 4i. As the analytical solution is only a function of z, it is unsurprising that refining in θ
has no significant effect on the errors. In particular, θ -refinement only makes observable changes to our numerical surface 
representation when there are few elements in the θ -direction. In Figs. 4g and 4h, the errors in the position, velocity, 
and normal pressure converge quadratically on mesh refinement. However, the error in λ is approximately constant. As 
discussed in Appendix A.2.3, a cylinder length L = 4, 000 is chosen, with radius changes over extended length scales, to avoid 
discontinuities in the normal pressure. For such cylinders, r′(z) � 1 and r′′(z) � 1, and therefore λ(z) ≈ λ0 = 1 everywhere 
(see Eq. (A.37))—irrespective of the shape of the bulge. Analytically, the difference between λ and λ0 is O(10−4) and occurs 
when the radius changes due to nonzero r′(z), r′′(z), and z-velocity (A.37). Numerically, errors in λ are also O(10−4) and 
occur when the radius changes due to the difference between the numerical and analytical position x; these errors persist 
along the length of the cylinder (Fig. 4d). As can be seen from Fig. 4h, the errors in position x are � 10−4 for all simulated 
meshes, and therefore the error in λ remains approximately constant at 10−4. We expect the λ error to decrease as one 
further refines the mesh, thus reducing errors in the position. However, these simulations are prohibitively expensive in our 
current implementation and require parallelization of our code. Our error calculations, captured in Figs. 4g–4i, conclude our 
analysis of fluid flows on fixed, curved surfaces.

5.3. Curved and deforming fluid films

In this section, we demonstrate the capabilities of our full LE finite element implementation by studying the stability 
of cylindrical fluid films which have a constant pressure drop across their surface. It is already known that given a surface 
tension and pressure drop, spherical fluid films of radius R satisfy the Young–Laplace equation p = 2λ/R and are stable 
[107]. The cylindrical fluid films under consideration, however, are found to be unstable to axisymmetric perturbations; the 
large, nontrivial shape changes resulting from the instability are studied here. Our numerical results are compared with 
analytical results from a linear stability analysis, and the two are found to be in excellent agreement. Moreover, we find the 
fluid film instability is mediated by the in-plane flow resulting from the initial shape perturbation, thus demonstrating the 
importance of our ALE framework in studying two-dimensional surfaces with in-plane flow. Our general LE implementation 
is also employed to show cylinders of any length are stable to non-axisymmetric perturbations, as confirmed analytically. 
We end by showing our results are independent of our choice of time step and mesh size, thus demonstrating the necessary 
convergence of numerical solutions.

5.3.1. Stability of axisymmetric perturbations
To begin, the position of an unperturbed cylinder of radius R and length L is given by

x(θ, z) = R er(θ) + z ez , (54)

with the polar angle θ ∈ [0, 2π) and the axial length z ∈ [0, L]. For the boundary conditions v = 0 on both edges of the 
cylinder, a valid base state solution is given by v = 0 and λ = λ0 everywhere, as shown in Appendix A.3. In this case the 
shape equation (20) simplifies to the Young–Laplace equation λ0 = p R , with p being the constant pressure drop imposed 
across the fluid surface.

At time t = 0, we perturb the radius of the stationary cylinder such that the initial position is given by

x(θ, z; t = 0) = R
[

1 + ε sin
(2π z

L

)]
er + z ez , (55)

where the small dimensionless parameter ε is set to 0.01 in our simulations. A schematic of the initial surface shape is 
shown in Fig. 5a. We evolve the fluid film from its initial state using our LE method and observe if it is stable or un-
stable with respect to the initial perturbation. Over the course of our simulation, we maintain a constant pressure drop 
across the fluid surface. This pressure drop enters as a body force ρb = pn, and its contribution to the tangent ma-
trix and residual vector is provided in Appendix C.4. We find the cylinder is stable to the initial perturbation when its 
length L < 2π R and unstable when L > 2π R . In the latter case, the initial perturbation continues to grow and eventually 
reaches a configuration that has spherical bulbs on the two ends (Figs. 5b–5f, supplemental movie E.1, video provided at 
youtu.be/FUx8fGXuzqY). These spherical shapes are believed to form because they are the stable surfaces compatible 
with our boundary conditions and incompressibility constraint. We proceed to use simple physical arguments to understand 
why the initial perturbation is unstable.

5.3.2. Physical explanation of the instability
The instability arises because our initial shape perturbation changes the mean curvature of the surface, which in turn 

changes the surface tension through the Young–Laplace equation. The resultant surface tension gradients then drive in-plane 
fluid flow, as can be seen from the in-plane equations (19). When L > 2π R , fluid flows from the narrow region of the 
cylinder to the wide region (see Fig. 5a), resulting in an unstable film. However, when L < 2π R , the surface flow is directed 
from the wide region to the narrow region, which causes the initial bulge to shrink over time such that the surface returns 
to its cylindrical configuration.

https://youtu.be/FUx8fGXuzqY
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Fig. 5. Curved and deforming fluid film. (a) Schematic of the initial film shape, according to Eq. (55), where the maximum radius perturbation is 1%. (b)–(f) 
Snapshots of an unstable and deforming film at t = 15 (b), t = 20 (c), t = 25 (d), t = 30 (e), and t = 35 (f), where the color indicates the surface tension. At 
early times (b), the shape perturbation results in surface tension gradients which drive a destabilizing flow. At late times (f), spherical bulbs appear on the 
ends of the cylinder. At all times, we enforce v = 0 on both edges. A video of the instability can be found at youtu.be/FUx8fGXuzqY or supplemental 
movie E.1. Simulation parameters are R = 1, L = 10, λ0 = 1, ζ = 1, �t = 0.1, hθ = 1/10, and hz = 1/40.

To understand this general idea in more detail, we begin with the Young–Laplace equation, written as λ = −p/(2H). For 
an unperturbed cylinder, H = −1/(2R). The initial perturbation (55) alters the mean curvature of the film by modifying 
both radii of curvature: it changes the radius of a circular cross-section of the cylinder, and the sinusoidal shape along z
introduces a nonzero radius of curvature in the axial direction. Analytically, the mean curvature H of the initially perturbed 
shape (55) is calculated according to Sec. 2.1 as

H = −1

2R
+ ε

2R

[
1 −

(2π R

L

)2
]

sin
(2π z

L

)
. (56)

Consider the quantity in square brackets in Eq. (56), which consists of two terms. The first term comes from the change in 
the circular cross-section, while the second term, which contains a factor of L−2, comes from the change in radius along 
the z-direction. According to Eq. (56), when L > 2π R , the mean curvature H becomes less negative where the cylinder 
bulges outwards and more negative where it bulges inwards. The Young–Laplace equation then requires λ to become larger 
at the outward bulge and smaller at the inward bulge (see Fig. 5b), and the in-plane equations (19) indicate fluid flows 
from regions of low λ to high λ. As a result, fluid flows along the surface tension gradient which in this case causes the 
instability to grow (see Fig. 5f). When L < 2π R , on the other hand, the effect on λ is reversed and the in-plane flow serves 
to stabilize the perturbed cylindrical shape.

5.3.3. Instability time scale
In addition to describing the instability with simple physical arguments, we performed a linear stability analysis and 

found the fluid film equations are indeed unstable to the initial perturbation (55) when L > 2π R (see Appendix A.3). Our 
analysis also revealed a theoretical time scale τtheo for the instability which, when L > 2π R , is given by

τtheo =
(4 ζ

λ0

)[
1 −

(2π R

L

)2
]−1

. (57)

Dimensionally, the ratio ζ/λ0 is expected to set the time scale of the deforming fluid film, as found in a study of topological 
transitions in two-dimensional dry foams [108]. Equation (57) indicates τtheo → 4ζ/λ0 as L → ∞ and τtheo → ∞ as L →
2π R+ , as shown by the green curve in Fig. 6.

We also calculate the time scale τsim from our full LE simulations as a function of length L and compare it to the 
analytical prediction (57). Assuming the unstable perturbation (55) initially grows exponentially in time, at small times the 
surface shape is given by

x(θ, z, t) = R
(

1 + ε r̃ et/τsim
)

er + z ez , (58)

where r̃ := sin(2π z/L) is defined for notational convenience. We seek the time t∗ for which the initial instability has grown 
by the chosen multiplicative factor χ , such that the surface position is given by

x(θ, z, t) = R
(

1 + ε χ r̃
)

er + z ez . (59)

If χ = 2, for example, we numerically measure the time t∗ when the initial perturbation doubles in size. By comparing 
Eqs. (58) and (59), the time scale τsim can be numerically calculated as

https://youtu.be/FUx8fGXuzqY
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Fig. 6. Curved and deforming fluid film: instability time scale. Plot of the time scale τ as a function of length L, where R = 1, λ0 = 1, ζ = 1, �t = 0.1, 
hθ = 1/30, hz = 1/60, and the initial film shape is given by Eq. (55). There is excellent agreement between the theoretical prediction (green curve, see 
Eq. (57)) and the simulation results (60) for χ = 2 (black stars), χ = 5 (orange circles), and χ = 10 (blue pentagons). The vertical dashed line shows the 
critical length L = 2π R above which cylindrical fluid films are unstable, and the horizontal dashed line indicates τ = 4ζ/λ0 when L → ∞.

τsim = t∗

lnχ
. (60)

We emphasize that in Eq. (60), χ is a chosen marker for the growth of the instability and t∗ is numerically measured to 
calculate τsim. Fig. 6 shows the excellent agreement between numerically calculated (60) and analytical (57) time scales, 
as a function of cylinder length, and demonstrates the simulations correctly predict the limiting time scale τ = 4ζ/λ0 as 
L → ∞.

5.3.4. Stability of non-axisymmetric perturbations
The linear stability analysis (Appendix A.3) also considered non-axisymmetric modes, and found the resultant surface 

tension gradients always stabilized the cylindrical configuration. Thus, all non-axisymmetric modes are stable. Here we 
consider the non-axisymmetric perturbation

x(θ, z; t = 0) = R
[

1 + ε sin
(
3θ
)

sin
(2π z

L

)]
er + z ez

= R
(

1 + ε r̃
)

er + z ez ,

(61)

where we redefine r̃ as r̃ := sin(3θ) sin(2π z/L) for notational convenience. The corresponding mean curvature is calculated 
as

H = −1

2R
− ε r̃

2R

[
8 +

(2π R

L

)2
]

. (62)

According to Eq. (62), if the cylinder bulges outwards (r̃ > 0) then H is more negative and the surface tension decreases. 
On the other hand, if the cylinder bulges inwards (r̃ < 0) then H is less negative and the surface tension increases. The 
resulting in-plane flow goes from the outward bulges to the inward bulges, and always stabilizes the film shape. We con-
firm the theoretical result with our full non-axisymmetric simulations, as shown in Fig. 7, and note all non-axisymmetric 
perturbations are stable (see Appendix A.3).

5.3.5. Time step and mesh refinement
Finally, we study the convergence of our axisymmetric numerical results in three cases: refining �t , refining hz , and 

refining hθ . In each convergence study, all simulations are run until time t = 35, at which point the initially cylindrical film 
has undergone significant deformation. Fig. 5f shows the shape of the fluid film at t = 35; Fig. 8 shows axial profiles of 
the radius and fluid z-velocity at different snapshots in time. In the latter, the fluid film shape and velocity are visually 
indistinguishable for different choices of the time step, as in each case �t is considerably less than the time scale τ ≈ 6.6
seconds (Eq. (57) with L = 10).

The L2-error is calculated for the fluid film position x and material velocity v at time t = 35, with the true solution being 
approximated as the finest simulation run (further details are provided in Fig. 9). Refining the time step �t shows linear 
scaling in the position and material velocity, as shown in Fig. 9a. Both the position and velocity are expected to scale linearly 
because we used a backward Euler temporal discretization, in which the position is not a fundamental unknown but rather 
calculated from the mesh velocity according to Eq. (11). The L2-error scales quadratically for both z-refinement (Fig. 9b) and 
θ -refinement (Fig. 9c). Given our implementation of C1-continuous bi-quadratic velocities (33) and C0-continuous bi-linear 
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Fig. 7. Curved and deforming fluid film. The initial non-axisymmetric film shape is given by Eq. (61), and the film evolves in time until it is once again 
axisymmetric. (a)–(c) cross-sections of the fluid film at z = L/4 show how the initial perturbation relaxes in time. At all times, we enforce v = 0 on both 
ends. Simulation parameters are R = 1, L = 10, λ0 = 1, ζ = 1, �t = 0.01, hθ = 1/10, and hz = 1/40. We choose ε = 0.1, rather than 0.01 as in all other cases, 
for ease in the visualization.

Fig. 8. Curved and deforming fluid film: results of time step refinement. We perturb a cylinder of length 10 and radius one, on a 30 × 60 mesh, where the 
time step �t ranges from 1/10 to 1/320 in powers of two (indicated in the legend). In all cases, the maximum initial radial perturbation is ε = 0.01. Going 
from left to right, we plot the position (top row) and z-velocity (bottom row) at times t = 5, 15, 25, and 35. In all cases, the different runs are visually 
indistinguishable.

Fig. 9. Curved and deforming fluid film: time step and mesh refinement. The L2-error of the surface position (blue circles) and material velocity (red 
squares) of the fluid film at time t = 35, with simulation parameters ε = 0.01, R = 1, L = 10, λ0 = 1, and ζ = 1. (a) Refining the time step �t , on a 30 × 60
mesh, with true solution approximated as the �t = 1/1280 simulation. (b) Refining the mesh width in the z-direction, hz , with �t = 0.1 and hθ = 1/20. 
The numerical result with hz = 1/160 is treated as the true solution. (c) Refining the mesh width in the θ -direction, hθ , with �t = 0.1 and hz = 1/40. The 
true solution is approximated as the simulation result with hθ = 1/160. In all cases, the position and velocity converge at the same rate: linearly with �t
refinement, and quadratically on both z- and θ -refinement.
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Fig. 10. Numerical results from the Lagrangian implementation of an initially cylindrical, perturbed fluid film. (a) Instability time scale, reproducing Fig. 6
with a Lagrangian scheme (all simulation parameters are unchanged). Once again, the theoretical time scale calculation of Eq. (57), depicted by the green 
curve, agrees quantitatively with the simulation results—calculated according to Eq. (60), and shown for χ = 2 (black stars), χ = 5 (orange circles), and 
χ = 10 (blue pentagons). (b) Lagrangian and LE mesh locations as a function of axial length z at time t = 35, depicted respectively by blue circles and 
red triangles. As the solution is axisymmetric, only radial mesh positions are provided. In both cases, a 20 × 160 mesh is used and only one in every 
eight mesh points is shown. (inset) Every mesh point in the range 4.9 ≤ z ≤ 5.5, highlighting the lack of Lagrangian mesh points in this region. (c) 
Lagrangian L2-error of the surface position (blue circles) and material velocity (red squares) of the fluid film at time t = 35, upon z-refinement. The error 
converges quadratically, as in the identical LE simulations (Fig. 9b), however Lagrangian errors are ∼ 5 times larger than their LE counterparts. (d)–(f) 
LE (top) and Lagrangian (bottom) simulations for a 30 × 60 mesh at times t = 5 (d), t = 20 (e), and t = 35 (f), with only the mesh shown to further 
demonstrate the nodal spacing. The Lagrangian mesh flows in-plane as the surface deforms, such that the spherical bulbs are more spatially resolved than 
the central tube. As a result, the LE mesh more accurately resolves the fluid film shape throughout the simulation (supplemental movie E.3, see video at 
youtu.be/wnXuK6d3WTQ).

surface tensions (32) with uniform B-splines, the quadratic scaling on mesh refinement is also expected [102]. Thus, our LE 
simulation results demonstrate the anticipated convergence behavior upon both time step and mesh refinement.

6. Lagrangian implementation

As previously mentioned, our ALE formulation accommodates different mesh velocity equations. In this section, a La-
grangian scheme is implemented to demonstrate the generality of our formulation. First, the lid-driven cavity problem is 
reexamined, which demonstrates how Lagrangian methods are unsuitable for problems involving shear flows. The Lagrangian 
implementation is then used to model the unstable cylindrical fluid film described in Sec. 5.3, and is shown to correctly 
capture the time scale associated with the instability. However, in the Lagrangian simulations, mesh nodes move due to in-
plane fluid flow. As a consequence, at later times certain regions of the surface contain only a few nodes and are spatially 
unresolved. Thus, Lagrangian simulations have errors larger than those of their LE counterparts.

Our finite element framework easily accommodates a Lagrangian formulation, as a Lagrangian scheme is recovered when

vm − v = 0 , (63)

which replaces Eq. (14) as the strong form of the mesh equation. Rather than satisfying Eq. (63) weakly, we simply enforce 
the velocity and mesh velocity degrees of freedom to be equal in our discretized system of equations at every Newton–
Raphson step. Our numerical implementation is described in Appendix B.7.

A Lagrangian formulation is unsuitable for even simple situations with in-plane velocity gradients. For example, 
a Lagrangian scheme fails to reproduce the lid-driven cavity result of Sec. 5.1.1 (supplemental movie E.2, video at 
youtu.be/FCoShaa_FhM). We thus analyze our Lagrangian implementation by simulating a perturbed cylindrical fluid 
film, and comparing the results to those of the LE simulations, found in Sec. 5.3. We first repeat the calculation of the 
deformation time scale (see Sec. 5.3.3), and find excellent agreement between theory and Lagrangian simulations (Fig. 10a). 
Next, the distribution of nodes at time t = 35 are compared for both the Lagrangian and LE implementations. While the LE 

https://youtu.be/wnXuK6d3WTQ
https://youtu.be/FCoShaa_FhM
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nodes maintain roughly equal spacing, the Lagrangian nodes move with the in-plane flow and become more concentrated 
in the spherical bulbs (Fig. 10b). Relative to the LE results, in Lagrangian simulations the central tubular region is spatially 
underresolved at later times (Figs. 10d–10f, supplemental movie E.3, video at youtu.be/wnXuK6d3WTQ). Accordingly, 
Lagrangian simulations have comparatively larger errors upon z-refinement (Fig. 10c, cf. Fig. 9b).

7. Conclusions

In this paper, we developed an ALE theory and formulation for two-dimensional materials which are arbitrarily curved, 
may be deforming over time, and exhibit in-plane fluidity. Within the setting of differential geometry, we introduced a new 
surface parametrization to endow the surface with a mesh whose in-plane motion can be specified arbitrarily. In particular, 
the mesh need not convect with the in-plane material velocity, and thus our framework does not suffer from the limitations 
of a Lagrangian formulation. With the ALE theory, and the results of a previous irreversible thermodynamic study [46], 
we used the standard tools of finite element analysis to devise an isoparametric, fully implicit finite element method for 
two-dimensional curved and deforming fluid films. In particular, we (i) developed a weak formulation of the problem, (ii) 
spatially discretized it with a standard Bubnov–Galerkin approximation, (iii) temporally discretized the residual equations 
with the backward Euler method, and (iv) linearized the resulting system of equations using the Newton–Raphson method. 
We also highlighted our use and implementation of the Dohrmann–Bochev method, which overcame the LBB instability. 
Finally, we provided several numerical examples to showcase the merits of our method. We showed how our formulation is 
easily adapted to solve for fixed-surface flows, with the added benefit of determining the pressure drop required to constrain 
the fluid to the surface. We also used both LE and pure Lagrangian numerical implementations to model cylindrical films 
which can deform over time. We found such films are unstable above a critical length, and demonstrated that our numerical 
results are in agreement with the predictions of a linear stability analysis.

Our main motivation behind this work is to develop a robust, theoretically sound, and sufficiently general method for 
modeling lipid membranes. To this end, we intend to implement a mesh velocity scheme which is not simply in-plane 
Eulerian (14) or Lagrangian (63) in our future work—which, in principle, should overcome the squeezing of the surface-
fixed coordinate nodes depicted in Fig. 1b. Furthermore, as fluid films are a computational precursor to lipid membranes, 
we plan to extend our implementation to model single-component lipid membranes by adding bending contributions to 
the weak formulation. This analysis will be presented as Part II of the current work [1]. With a numerical method to 
simulate single-component lipid membranes, our framework can be extended to describe various phenomena governing 
biological membranes—such as the coupling between the bulk fluid surrounding the membrane and intramembrane lipid 
flows [66], in-plane species diffusion [65], and membrane bending and contact [109,110]. Moreover, one could analyze 
multi-component systems, which consist of different lipid and transmembrane proteins. Recent microscopic studies demon-
strate how protein–lipid and protein–protein interactions play an important role in membrane bending [111–114] and lipid 
domain formation [115]; experiments also demonstrate the coupling between lipid phase separation and membrane bending 
[116]. Modeling such phenomena [33] would be a natural extension of our work.
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Appendix A. Analytical fluid film calculations

In this appendix, we provide several theoretical calculations for two-dimensional curved and deforming fluid films. First, 
we determine the material stresses using an irreversible thermodynamic framework [46]. The Helmholtz free energy density 
for a two-dimensional fluid film is calculated by using a Lagrange multiplier λ to enforce areal incompressibility. The in-
plane and out-of-plane equations of motion of such a film are then determined, and simplified in three cases: a completely 
flat film, a cylindrical film, and a cylindrical film with a bulge in the center. Finally, a linear stability analysis is performed 
on an initially cylindrical fluid film that is allowed to deform, which is found to be unstable when its length exceeds its 
circumference. We end by calculating the time scale associated with the instability.

https://youtu.be/wnXuK6d3WTQ
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A.1. Irreversible thermodynamics and material stresses

We begin by briefly overviewing how the stresses of a general two-dimensional material are obtained via the balance 
law formulation and irreversible thermodynamic framework of Ref. [46]. As discussed in Sec. 3.1, the stress vectors T α̌ are 
the boundary tractions across curves of constant ζα . Without loss of generality, the stress vectors can be decomposed in 
the {aα̌ , n} basis as

T α̌ = N α̌β̌a
β̌

+ S α̌n , (A.1)

where N α̌β̌ and S α̌ are the in-plane and out-of-plane (shear) traction components, respectively. An angular momentum 
balance reveals there are two conditions to be satisfied in relating N α̌β̌ and S α̌ to the couple-stress components Mα̌β̌ —the 
latter of which are related to the couples acting on the edge of a surface patch (see Ref. [46] for more details). The first 
condition requires

σ α̌β̌ := N α̌β̌ − bβ̌

μ̌
Mμ̌α̌ (A.2)

to be symmetric, an analogous condition to the symmetry of the stress tensor for bulk systems. Physically, σ α̌β̌ contains the 
couple-free components of the in-plane stresses. The second condition requires

S α̌ = −M β̌α̌

;β̌ , (A.3)

which indicates gradients of the moments lead to shear forces, in analogy to well-known beam bending examples in which 
the shear force is proportional to the spatial derivative of the moment. For two-dimensional surfaces which cannot sustain 
moments, such as fluid films, the couple-stress components Mα̌β̌ = 0, such that N α̌β̌ is symmetric and the shear forces 
S α̌ = 0.

To determine the stresses in a general two-dimensional material, an irreversible thermodynamic framework is employed. 
We introduce a Helmholtz free energy per unit mass, ψ , for the material, which as a thermodynamic state function captures 
only the reversible behavior of the material. For the two-dimensional materials of interest, we assume ψ depends on only 
the covariant metric aα̌β̌

, the curvature components bα̌β̌
, and the temperature T = T (ζα, t) with the functional dependence

ψ = ψ(aα̌β̌
, bα̌β̌

, T ) . (A.4)

With a general form of the Helmholtz free energy density satisfying Eq. (A.4), the irreversible thermodynamic framework 
developed in Ref. [46] shows that in the linear irreversible regime, the couple-free stress components σ α̌β̌ and the couple-
stress components Mα̌β̌ are given by

σ α̌β̌ = ρ
( ∂ψ

∂aα̌β̌

+ ∂ψ

∂a
β̌α̌

)
+ πα̌β̌ and Mα̌β̌ = ρ

2

( ∂ψ

∂bα̌β̌

+ ∂ψ

∂b
β̌α̌

)
+ ωα̌β̌ . (A.5)

In Eq. (A.5), the first terms on the right-hand side provide the elastic contribution to the stresses and couple-stresses 
from the free energy ψ , while πα̌β̌ and ωα̌β̌ describe the stresses due to in-plane and out-of-plane dissipative phenomena, 
respectively. In all cases considered, we assume there is no dissipation from rates of change of curvature, such that ωα̌β̌ = 0. 
Furthermore, for isotropic and incompressible materials with in-plane fluidity, the viscous stresses are given by Eq. (18). Note 
that studies based on the Euler–Lagrange equations for lipid membranes do not contain forces resulting from the viscous 
contribution πα̌β̌ to the stress components σ α̌β̌ .

At this point, we have a general method for determining the governing equations for an incompressible, two-dimensional 
material with in-plane fluidity. By choosing the form of the Helmholtz free energy density ψ , we calculate the stress and 
couple-stress components according to Eq. (A.5), determine the components of the tractions (A.1) through Eqs. (A.2) and 
(A.3), and substitute the tractions into the linear momentum balance (16). In what follows, we determine the Helmholtz 
free energy density for a fluid film, and then carry out such a procedure.

A.1.1. Helmholtz free energy density
In this section, we calculate the Helmholtz free energy density of an incompressible fluid film, which is a constraint en-

forcing areal incompressibility through the Lagrange multiplier λ. To this end, we introduce a reference configuration of the 
surface, write the total surface energy such that there is no area change between the current and reference configurations, 
and then determine the form of the Helmholtz free energy density ψ .

Consider an arbitrarily curved patch of surface P which is deforming over time, and whose position is given by x̌(ζα, t). 
At some time t0, the reference patch P0 is specified by its position x̌0, defined to be

x̌0 := x̌(ζα, t0) . (A.6)
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The reference patch P0 is static and its properties by definition do not change over time. The areal mass density of the 
reference patch is denoted ρ0, and the Jacobian determinant J between the reference and current patch is given by J :=√

det aα̌β̌
. A differential areal element dA on the reference patch is related to the corresponding areal element da on the 

current patch according to da = J dA. The global form of the conservation of mass can be written as∫
P0

ρ0 dA =
∫
P

ρ da , which implies
∫

P0

ρ0 dA =
∫

P0

ρ J dA . (A.7)

As the reference patch P0 is stationary, Eq. (A.7) shows

ρ0 = ρ J . (A.8)

Areal incompressibility is enforced through the equation J = 1, which indicates areas do not change (A.8). We introduce 
the Helmholtz free energy of the patch, W , as

W =
∫

P0

λ
(

J − 1
)

dA , (A.9)

where λ is a Lagrange multiplier enforcing the incompressibility constraint J = 1. As ψ is the Helmholtz free energy per 
unit mass, the total Helmholtz free energy of the patch is also given by

W =
∫
P

ρ ψ da =
∫

P0

ρ ψ J dA =
∫

P0

ρ0 ψ dA . (A.10)

In Eq. (A.10), we used the relation da = J dA to map the integral to the reference patch, and then substituted Eq. (A.8). Due 
to the arbitrariness of P0, the integrands of Eq. (A.9) and the right-hand side of Eq. (A.10) are equal, and thus

ψ = λ

ρ0

(
J − 1

)
= λ

( J

ρ0
− 1

ρ0

)
= λ

( 1

ρ
− 1

ρ0

)
. (A.11)

With the result of Eq. (A.11), as well as the identities ∂ρ/∂aα̌β̌
= − 1

2 ρ aα̌β̌ and ∂ρ/∂bα̌β̌
= 0, we find σ α̌β̌ to be given by 

Eq. (17) and Mα̌β̌ = 0, such that T α̌ = σ α̌β̌a
β̌

.

A.2. In-plane and out-of-plane equations of motion

As described in Appendix A.1, given the in-plane stresses σ α̌β̌ (17), the stress vectors of a fluid film are given by 
T α̌ = σ α̌β̌a

β̌
. By substituting the stress vectors into Eq. (16), applying the product rule, and using the identity a

β̌;α̌ = bα̌β̌
n, 

we obtain the equations of motion as

ρ v̇ = ρb + σ
α̌β̌

;α̌ a
β̌

+ σ α̌β̌bα̌β̌
n . (A.12)

We proceed to show how Eqs. (19) and (20) can be found by taking the dot product of Eq. (A.12) with the unit normal n
and the in-plane basis vectors aα̌ , respectively.

Using Eq. (17) for σ α̌β̌ , realizing H = 1
2 aα̌β̌bα̌β̌

, and taking the dot product of Eq. (A.12) with the unit normal n yields

ρ v̇ · n = p + σ α̌β̌bα̌β̌

= p + 2λH + πα̌β̌bα̌β̌
,

(A.13)

where the pressure drop p across the surface is given by p = ρb · n. The component form of πα̌β̌ can be more conveniently 
written as [46]

πα̌β̌ = ζ
(

v α̌
;μ̌ aβ̌μ̌ + v β̌

;μ̌ aα̌μ̌ − 2 v bα̌β̌
)

. (A.14)

Substituting Eq. (A.14) into Eq. (A.13) and using the identity bα̌β̌bα̌β̌
= 4H2 − 2K leads to the out-of-plane shape equation

ρ v̇ · n = p + 2λH + ζ
(

v α̌
;μ̌ aβ̌μ̌ + v β̌

;μ̌ aα̌μ̌ − 2 v bα̌β̌
)

bα̌β̌

= p + 2λH + ζ
(

2 bα̌β̌ v α̌;β̌ − 4 v
(
2H2 − K

))
.

(A.15)
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The result of Eq. (A.15) is presented in the main text as Eq. (20). When there are no flows, Eq. (A.15) simplifies to the 
well-known Young–Laplace equation for fluid films, p + 2λH = 0.

To find the in-plane equations of motion, Eq. (A.12) is contracted with the in-plane basis vector aα̌ and Eq. (17) is 
substituted into the result to yield

ρ v̇ · aα̌ = ρbα̌ + aα̌β̌
σ

γ̌ β̌

;γ̌

= ρbα̌ + λ,α̌ + aα̌β̌
π

γ̌ β̌

;γ̌ .

(A.16)

The last term in Eq. (A.16) is simplified by first taking the covariant derivative of the viscous stresses provided in Eq. (A.14)
to find

π
γ̌ β̌

;γ̌ = ζ
(

v γ̌

;μ̌ aβ̌μ̌ + v β̌

;μ̌ aγ̌ μ̌ − 2 v bγ̌ β̌
)

;γ̌

= ζ
(

v γ̌

;μ̌γ̌
aβ̌μ̌ + v β̌

;μ̌γ̌
aμ̌γ̌ − 2 v,γ̌ bγ̌ β̌ − 2 v bγ̌ β̌

;γ̌
)

.

(A.17)

Using the identities bγ̌ β̌

;γ̌ = 2 H,γ̌ aγ̌ β̌ and v γ̌

;μ̌γ̌
= v γ̌

;γ̌ μ̌
+ K v γ̌ aγ̌ μ̌ , along with Eq. (15), Eq. (A.17) can be written as

π
γ̌ β̌

;γ̌ = ζ
(

v β̌

;μ̌γ̌
aμ̌γ̌ + K v β̌ + aβ̌μ̌ v γ̌

;γ̌ μ̌
− 2 v,γ̌ bγ̌ β̌ − 4v H,γ̌ aγ̌ β̌

)
= ζ

(
v β̌

;μ̌γ̌
aμ̌γ̌ + K v β̌ + aβ̌μ̌

(
2 v,μ̌ H + 2 v H,μ̌

)− 2 v,γ̌ bγ̌ β̌ − 4v H,γ̌ aγ̌ β̌
)

= ζ
(

v β̌

;μ̌γ̌
aμ̌γ̌ + K v β̌ + 2 v,μ̌ H aβ̌μ̌ − 2 v,γ̌ bγ̌ β̌ − 2 v H,γ̌ aγ̌ β̌

)
.

(A.18)

Substituting Eq. (A.18) into Eq. (A.16), one obtains the in-plane equations

ρ v̇ · aα̌ = ρbα̌ + λ,α̌ + ζ
(

aμ̌γ̌ v α̌;μ̌γ̌ + K v α̌ + 2 v,α̌ H − 2 v,γ̌ bγ̌

α̌
− 2 v H,α̌

)
, (A.19)

which, upon exchange of dummy indices, is identical to Eq. (19). Equation (A.19) is the extension of the Navier–Stokes 
equations to curved and deforming fluid films. We note that Eqs. (A.15) and (A.19) were first presented in Refs. [16,17].

A.2.1. Flat plane equations
A flat surface is parametrized by ζ 1 := x and ζ 2 := y, such that the position x is given by

x(x, y) = x ex + y e y . (A.20)

Employing the results of Sec. 2.1 yields aα = eα , n = ez , aαβ = δαβ , bαβ = 0, H = 0, K = 0, and �α
λμ = 0, where δαβ is the 

standard Kronecker delta. The velocity v is written as

v = vx ex + v y e y . (A.21)

There is no normal component of the velocity in the normal direction, v = v · n = 0, because the fluid is constrained to 
lie in the plane. We substitute the geometric quantities and velocity equations into the continuity equation (15), shape 
equation (A.15), and in-plane equations (A.19) to obtain

vx,x + v y,y = 0 , p = 0 , and

ρ
(

vα,t + vx vα,x + v y vα,y

)
= ρbα + λ,α + ζ

(
vα,xx + vα,yy

)
.

(A.22)

The first equation in (A.22) is the familiar continuity equation, the second equation says there is no pressure drop across a 
fluid flowing on a flat plane, and the last equations are the two-dimensional Navier–Stokes equations in which the pressure 
has been replaced by the negative surface tension.

A.2.2. Fixed cylinder equations
A cylindrical surface is parametrized with ζ 1 := θ and ζ 2 := z, which are the standard polar angle and axial position of 

a cylindrical coordinate system. The surface position x on the cylinder is given by

x(θ, z) = R er(θ) + z ez , (A.23)

which yields a1 = Reθ , a2 = ez , n = er , aαβ = diag (R2, 1), aαβ = diag (R−2, 1), bαβ = diag (−R, 0), H = −1/(2R), K = 0, 
and �α = 0. The velocity v is written as
λμ
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v = vθ a1 + vz a2 . (A.24)

Due to the different units of a1 and a2, vθ has units of angular velocity and vz has units of velocity. As is standard for 
a fixed surface, the normal velocity v = v · n = 0. Substituting the geometric equations into the continuity equation (15), 
shape equation (A.15), and in-plane equations (A.19), and ignoring inertial terms, one obtains, respectively,

vθ
,θ + vz

,z = 0 , (A.25)

R p = 2ζ vθ
,θ + λ , (A.26)

ζ
(

vθ
,θθ + R2 vθ

,zz

) + λ,θ = 0 , (A.27)

and

ζ
(

vz
,θθ + R2 vz

,zz

) + R2λ,z = 0 . (A.28)

In the absence of flows, the shape equation (A.26) again reduces to the familiar Young–Laplace equation for cylinders: 
p = λ/R .

A.2.3. Equations for a cylinder with a bulge
In this section, we analytically calculate the velocity, surface tension, and normal pressure solution of the bulged cylinder 

shown in Fig. 4a. We assume the solution is axisymmetric, such that all unknowns depend only on the axial position z, and 
also neglect inertial terms. Our analytical solution is used to validate the numerical solution, as described in the main text.

The bulged cylinder is parametrized with the axial distance along the cylinder z and polar angle θ . The cylinder radius, 
which is now a function of axial position only, is denoted r(z) and given by

r(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ z∗ ≤ 3/11

1 + 2
25

(
11 z∗ − 3

)2 3/11 ≤ z∗ ≤ 7/22

1 + 1
25

(
1 − 2 (11 z∗ − 4)2

)
7/22 ≤ z∗ ≤ 4/11

1.04 4/11 ≤ z∗ ≤ 1/2

r
(
1 − Lz∗) 1/2 ≤ z∗ ≤ 1 ,

(A.29)

where z∗ := z/L. Defining the quantities ζ 1 := θ and ζ 2 := z, the surface position is given by

x(θ, z) = r(z) er(θ) + z ez . (A.30)

From the surface position we calculate a1 = reθ , a2 = r′er + ez , n = (er − r′ez)/(1 + (r′)2), aαβ = diag (r2, 1 + (r′)2), aαβ =
diag (r−2, 1/(1 + (r′)2)), and bαβ = 1/(1 + (r′)2) · diag (−r, r′′), where ( · )′ denotes differentiation with respect to z. The 
mean and Gaussian curvatures are

H = r r′′ − (1 + (r′)2
)

2r
(
1 + (r′)2

) and K = −r′′

r
(
1 + (r′)2

)3
, (A.31)

respectively. The Christoffel symbols are also calculated, and those which are nonzero are given by

�1
12 = �1

21 = r′

r
, �2

11 = −r′ r

1 + (r′)2
, and �2

22 = 1

2

d

dz

[
ln
(
1 + (r′)2)] . (A.32)

With the known geometric quantities, we solve for the velocity and surface tension on the fixed surface. The velocity v
is first decomposed in the {a1, a2} basis as

v = vθ a1 + vz a2 , (A.33)

where again the normal velocity v · n = 0 because the fluid is constrained to flow on the fixed surface. Substituting the 
velocity decomposition (A.33) and Christoffel symbols (A.32) into the continuity equation (15) and setting vθ = 0, due to 
our axisymmetric assumption, yields

(vz)′ + vz · d

dz

[
ln
(
r
√

1 + (r′)2
)]= 0 . (A.34)

Eq. (A.34) is separable as the cylinder shape r(z) is known, and by specifying the inlet velocity vz(z = 0) to be a given value 
V , we find the z-velocity solution to be
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vz(z) = V · r(0)

r(z)
·
(

1 + (r′(0)
)2

1 + (r′(z)
)2

)1/2

. (A.35)

Substituting the known z-velocity (A.35) and geometric relations into the in-plane vz equation (A.19) and neglecting 
inertia, one obtains

dλ

dz
= ζ vz · r′′(2 + (r′)2

)
r
(
1 + (r′)2

) . (A.36)

Since vz is known from the continuity equation (A.34), Eq. (A.36) determines the surface tension λ = λ(z). By setting 
λ(z = 0) to be a constant, λ0, and integrating Eq. (A.36), we find the surface tension is given by

λ(z) = λ0 +
z∫

0

ζ vz(s) · r′′(s)
[
2 + (r′(s)

)2]
r(s)

[
1 + (r′(s)

)2] ds . (A.37)

Finally, by substituting the z-velocity, surface tension, and geometric quantities into the shape equation (A.15), the pressure 
p = p(z) is found to be

p(z) = −2λH + 2ζ

[
r′

r

(
r′′(

1 + (r′)2
)2

+ 1

r
(
r + (r′)2

))] vz . (A.38)

Eqs. (A.33), (A.37), (A.38), and our assumption vθ = 0 constitute a solution to the problem, which is used to analyze the 
numerical solutions in Sec. 5.2.3 in the main text.

Choice of cylinder length In our numerical solution of the bulged cylinder, C1-continuous piecewise quadratic basis functions 
are used to represent the surface (36). In this basis, r′′ is discontinuous, and as a result, the mean curvature H and the 
pressure drop p are discontinuous as well. Consequently, they are poorly represented in our finite-dimensional function 
space. To avoid such discontinuities in Sec. 5.2.3, a large cylinder length L = 4, 000 is chosen such that r′ and r′′ are 
approximately zero. In this limit, H is given approximately by H(z) ≈ −1/(2 r(z)), which is continuous and, as it is a 
function of z, leads to a nontrivial solution.

A.3. Stability analysis of a deforming cylinder

In this section, we analyze the linear stability of an initially cylindrical fluid film, which is able to deform over time. The 
film is acted on by a constant pressure drop p across its surface, and is prescribed to have zero velocity everywhere on its 
boundary. A base state solution to the cylindrical fluid equations of Sec. A.2.2 is provided, and then the first-order perturbed 
equations are presented. The perturbed quantities are expanded in a Fourier basis, and the dispersion relation is solved for. 
It is found that fluid films are unstable when their length L is greater than their circumference, 2π R . The instability analysis 
also reveals the time scale of the growing, unstable modes. We end by showing how an axisymmetric assumption, and the 
manipulation of the perturbed equations, leads to the same theoretical predictions.

A solution to the unperturbed cylindrical equations (A.25)–(A.28) is given by

vz = V , vθ = 0 , and λ = λ0 . (A.39)

In Eq. (A.39), V is a constant speed and λ0 is related to the constant pressure drop p according to λ0 = R p. A perturbation 
of the film surface position is introduced as

x(θ, z, t) = (R + ε r̃(θ, z, t)
)

er + z ez , (A.40)

where ε is a small parameter and r̃(θ, z, t) is an O(R) radial perturbation. Importantly, the perturbation introduced in 
Eq. (A.40) both changes the geometry of the surface, and also allows for a normal velocity v = v · n given by v = ε r̃,t . In 
this section, a ‘tilde’ ( ·̃ ) is used over all perturbed variables, such that the θ -velocity, z-velocity, and surface tension are 
written as

vθ = ε ṽθ , vz = V + ε ṽ z , and λ = λ0 + ε λ̃ . (A.41)

Setting the perturbed quantities to zero in Eq. (A.41) recovers the base state solution (A.39).
By calculating the perturbed geometric quantities describing the surface, substituting them along with Eq. (A.41) into 

the governing equations, and keeping only terms of order ε , we obtain the perturbed equations for an initially cylindrical 
fluid film. The details of this calculation are omitted, however, the results are presented as
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0 = R
(

ṽθ
,θ + ṽ z

,z

) + r̃,t + V r̃,z , (A.42)

0 = ζ
(
r̃,θt + R ṽθ

,θθ + R3 ṽθ
,zz + V r̃,θ z

) + R λ̃,θ , (A.43)

0 = ζ
(− R2 r̃,zt + R ṽz

,θθ + R3 ṽ z
,zz − V R2 r̃,zz

) + R3 λ̃,z , (A.44)

and

0 = −2ζ
(

R ṽθ
,θ + r̃,t + V r̃,z

) + λ0
(
r̃ + r̃,θθ + R2 r̃,zz

) − R λ̃ . (A.45)

Eqs. (A.42)–(A.45) are the perturbed continuity, in-plane θ , in-plane z, and shape equations, respectively.
The four equations (A.42)–(A.45) contain four unknowns: r̃, ṽθ , ṽ z , and λ̃. To perform a linear stability analysis, we 

follow the canonical treatment of Ref. [117], and expand all unknowns in a Fourier basis as

r̃(θ, z, t) =
∑
m,q

r̂(m,q) ei(mθ+qz−ωt) , ṽθ (θ, z, t) =
∑
m,q

v̂θ (m,q) ei(mθ+qz−ωt) , (A.46)

ṽ z(θ, z, t) =
∑
m,q

v̂ z(m,q) ei(mθ+qz−ωt) , and λ̃(θ, z, t) =
∑
m,q

λ̂(m,q) ei(mθ+qz−ωt) ,

where m ∈Z such that all quantities are periodic in θ and q are the allowed wavenumbers given by q = nπ/L for n ∈Z. The 
coefficients r̂, v̂θ , v̂ z , and λ̂ are the Fourier coefficients. Substituting Eq. (A.46) into the perturbed equations (A.42)–(A.45)
and recognizing modes of different m and q are independent leads to the equations

0 = R
(
m v̂θ + q v̂z) + r̂

(
V q − ω

)
, (A.47)

0 = r̂
(
m ω − m q V

)+ v̂θ
(− m2 R − q2 R3) + i

m R

ζ
λ̂ , (A.48)

0 = r̂
(− ωq R + V q2 R

) + v̂ z(− m2 − q2 R2) + i
R2q

ζ
λ̂ , (A.49)

and

0 = r̂
(

2 i ζ(ω − q V ) + λ0
(
1 − m2 − R2q2))− 2 i m ζ R v̂θ − R λ̂ . (A.50)

Eqs. (A.47)–(A.50) are linear in the unknowns and can be written as the matrix equation A y = 0, for y = (r̂, v̂θ , v̂ z, λ̂)T and 
coefficient matrix A. For a nontrivial solution to exist, the matrix A cannot be invertible, which is guaranteed by setting 
(det A) equal to zero. Doing so yields the dispersion relation

ω = q V + i
λ0

4 ζ R4q4
· (m2 + R2q2)2 (

1 − m2 − R2q2) . (A.51)

Given the form of our ansatz is ei(mθ+qz−ωt) for all terms (A.46), our solution is unstable when Im {ω} > 0, which only occurs 
when m2 + R2q2 < 1. Accordingly, unstable modes are axisymmetric (m = 0) and only occur when q < 1/R , or equivalently 
L > nπ R .

Note that our linear stability analysis predicts the n = 1 mode is unstable when L > π R . However, for such an instability 
to grow, material is required to be drawn in to increase the area of the fluid film, a phenomena which is incompatible with 
our zero-velocity boundary conditions. Accordingly, given our choice of boundary conditions, instabilities only occur when 
L > 2π R . For the n = 2 mode, the time scale τ is given by 1/Im{ω}, found to be

τ =
(4 ζ

λ0

)[
1 −

(2π R

L

)2
]−1

. (A.52)

The theoretical time scale τ in Eq. (A.52) is presented in Eq. (57) of the main text.
With the understanding that axisymmetric, sinusoidal perturbations lead to unstable solutions, a simpler stability anal-

ysis can be performed. Assuming all perturbed quantities are independent of θ , no base state z-velocity (V = 0), and no 
perturbed θ -velocity (ṽθ = 0), Eqs. (A.42)–(A.45) simplify to

0 = R ṽz
,z + r̃,t , (A.53)

0 = −ζ r̃,zt + ζ R ṽz
,zz + R λ̃,z , (A.54)
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and

0 = −2 ζ r̃,t + λ0 r̃ + λ0 R2 r̃,zz − R λ̃ . (A.55)

We consider an initial perturbation of the form

r̃(z, t = 0) = R sin
(
q z
)
, (A.56)

where as before q = nπ/L, and seek to determine how this perturbation evolves in time.
To understand the time evolution of the perturbation, captured in r̃,t , a series of algebraic manipulations are carried out. 

The initial perturbation (A.56) is substituted into the perturbed shape equation (A.55), leading to

−2 ζ r̃,t + (
1 − q2 R2)λ0 r̃ − R λ̃ = 0 . (A.57)

Taking the partial derivative of Eq. (A.53) with respect to z and subtracting Eq. (A.54) yields

2 ζ r̃,tz − R λ̃,z = 0 . (A.58)

To Eq. (A.58) we add the partial derivative of Eq. (A.57) with respect to z and obtain(
1 − q2 R2)λ0 r̃,z − 2 R λ̃,z = 0 . (A.59)

Integrating Eq. (A.59) with respect to z, recognizing the integration constant is zero, and substituting the result into 
Eq. (A.57) leads to(

1 − q2 R2)λ0 r̃ = 4 ζ r̃,t . (A.60)

Eq. (A.60) describes the time evolution of r̃ only in terms of r̃ itself, and thus describes when the perturbation will grow 
or decay in time. When q2 R2 < 1, or equivalently when L > nπ R , the initial perturbation grows in time and the cylinder is 
unstable. As before, the boundary conditions exclude the n = 1 mode, and cylindrical fluid films are expected to be unstable 
when L > 2π R .

Eq. (A.60) reveals the time scale τ for the evolution of the initial perturbation. For the n = 2 mode, the time scale is 
given by

τ =
(4 ζ

λ0

)[
1 −

(2π R

L

)2
]−1

, (A.61)

in agreement with the full perturbation analysis time scale (A.52).

Appendix B. Numerical solution method

In this section, we discretize the fluid surface and define a finite number of basis functions on the discretized domain. 
The fundamental unknowns, as well as their arbitrary variations, are expressed in terms of these basis functions according 
to the Bubnov–Galerkin approximation. The resulting residual equations are temporally discretized using the backward Euler 
method, and then solved using Newton–Raphson iteration. We end by presenting the details of our numerical implementa-
tion of the Dohrmann–Bochev method [79], which removes numerical inf–sup instabilities arising from the incompressibility 
of the fluid film.

B.1. Discretization and Bubnov–Galerkin approximation

For the space Vh (36), we introduce the nn (number of nodes) basis functions {NI (ζ
α)} such that Vh = (span {NI (ζ

α)})3, 
and an arbitrary velocity vh ∈ Vh can be expressed as

v(ζα, t) =
nn∑
J=1

N J (ζ
α) v J (t) = [N] [v(t)] . (B.1)

In Eq. (B.1) and from now on, the subscript ‘h’ is dropped for notational convenience. All variables refer to the approximate 
solution unless otherwise noted. We introduced the 3 × (3 · nn) matrix of shape function values, [N], and the (3 · nn) × 1
vector of velocity degrees of freedom at time t , [v(t)], given respectively by

[N] :=
[

N1 [1] N2 [1] . . . Nnn [1]
]

and [v(t)] :=

⎡
⎢⎢⎣

v1(t)
...

vnn(t)

⎤
⎥⎥⎦ , (B.2)
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where [1] is the 3 × 3 identity matrix. In practice, the entire matrix [N] is never computed. Rather, as discussed in Sec. B.5, 
the shape functions over a single element are calculated and stored in a local shape function matrix.

As the mesh velocity vm ∈ Vh , we similarly expand the mesh velocity as

vm(ζα, t) = [N] [vm(t)] , (B.3)

where the mesh velocity degree of freedom vector [vm(t)] is defined analogously to [v(t)] in Eq. (B.2). The identity matrix 
[1], which appears in Eqs. (B.1) and (B.3) via the shape function matrix [N] (B.2)1, is chosen to be the Cartesian identity 
matrix. Accordingly, the velocity and mesh velocity degrees of freedom contained in [v] and [vm] are Cartesian components 
as well. Thus, when v and vm are calculated through Eqs. (B.1) and (B.3), we find their representation in the canonical 
Cartesian basis.

The space of surface tensions �h is spanned by the nln (number of Lagrange multiplier nodes) Lagrange multiplier 
basis functions {N̄ J (ζ

α)}, written as �h = span {N̄ J (ζ
α)}. Here and from now on, discretized quantities with a ‘bar’ accent 

correspond to the Lagrange multiplier λ. We introduce [N̄] as the 1 ×nln vector of Lagrange multiplier basis functions and 
[λ̄(t)] as the corresponding nln× 1 vector of Lagrange multiplier degrees of freedom, given by

[N̄] :=
[

N̄1 N̄2 . . . N̄nln

]
and [λ̄(t)] :=

⎡
⎢⎢⎣

λ̄1(t)
...

λ̄nln(t)

⎤
⎥⎥⎦ , (B.4)

such that the surface tension can be expanded as

λ(ζα, t) = [N̄] [λ̄(t)] . (B.5)

Note the basis functions contained in [N] and [N̄] are determined by the discretization of the domain �, so the only 
remaining unknowns are contained in [v(t)], [vm(t)], and [λ̄(t)], which are together called the degrees of freedom of the 
system.

The arbitrary variations δv(ζα), δvm(ζα), and δλ(ζα) are discretized with the same basis functions as their unknown 
counterparts, according to the Bubnov–Galerkin approximation, and are expanded as

δv(ζα) = [N] [δv] , δvm(ζα) = [N] [δvm] , and δλ(ζα) = [N̄] [δλ̄] . (B.6)

The variation vectors [δv], [δvm], and [δλ̄] are given by prefixing a ‘δ’ to every entry of their respective counterparts, [v], 
[vm], and [λ̄].

B.2. Residual vector equations

As shown in Appendix C.1, by substituting the discretized unknown variations (B.6) into Eq. (31) and introducing the 
shorthand G̃(t) := G(u(ζα, t), δu(ζα)), where u represents all unknowns and δu is its arbitrary variation, the weak form 
can be written as

G̃(t) = [δv]T[rv(t)] + [δvm]T[rm(t)] + [δλ̄]T[rλ̄(t)] = 0

∀ [δv] ∈ R3·nn, [δvm] ∈ R3·nn, [δλ̄] ∈ Rnln ,

(B.7)

for any time t . Since the weak form is linear in the unknown variations, the global velocity, mesh velocity, and surface 
tension residual vectors are respectively given by

[rv(t)] := ∂G̃(t)

∂[δv] , [rm(t)] := ∂G̃(t)

∂[δvm] , and [rλ̄(t)] := ∂G̃(t)

∂[δλ̄] . (B.8)

The calculation of the residual vectors, according to Eqs. (B.7) and (B.8), is provided in Appendix C.1. Since the discretized 
unknown variations are arbitrary, Eq. (B.7) is equivalent to simultaneously requiring the global residual vectors to be zero, 
written as

[rv(t)] = [0] , [rm(t)] = [0] , and [rλ̄(t)] = [0] . (B.9)

B.3. Time integration

The relations provided in Eq. (B.9) are true at any time t , however, they are only solved numerically at a set of N discrete 
times {t1, t2, . . . , tN}. Thus, assuming a known solution u(ζα, tn) satisfying Eq. (B.9) at time tn , we seek the unknown 
solution u(ζα, tn+1) satisfying Eq. (B.9) at time tn+1. To this end, the fundamental unknowns are expressed as
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v(ζα, tn+1) = v(ζα, tn) + �v(ζα, tn+1) , (B.10)

vm(ζα, tn+1) = vm(ζα, tn) + �vm(ζα, tn+1) , (B.11)

and

λ(ζα, tn+1) = λ(ζα, tn) + �λ(ζα, tn+1) . (B.12)

Furthermore, Eq. (11) is discretized with the backward Euler method to yield

x̌(ζα, tn+1) = x̌(ζα, tn) + �t �vm(ζα, tn+1) , (B.13)

where �t := tn+1 − tn . According to Eq. (B.13), changes in the mesh velocity affect the surface position, which in turn affects 
the various geometric terms found in the residual vector equations (B.9).

Discretizing the fundamental unknowns ((B.1), (B.3), (B.5)), and introducing the notation [vn] = [v(tn)], for example, 
Eqs. (B.10)–(B.13) are equivalently expressed as

v(ζα, tn+1) = [N] [vn+1] = [N] [vn] + [N] [�vn+1] , (B.14)

vm(ζα, tn+1) = [N] [vm
n+1] = [N] [vm

n ] + [N] [�vm
n+1] , (B.15)

λ(ζα, tn+1) = [N̄] [λ̄n+1] = [N̄] [λ̄n] + [N̄] [�λ̄n+1] , (B.16)

and

x̌(ζα, tn+1) = [N] [xn+1] = [N] [xn] + �t [N] [�vm
n+1] . (B.17)

Note that while the position x̌ is not a fundamental unknown, it is discretized as in Eq. (B.17) such that the change in mesh 
velocity, [�vm

n+1], is properly accounted for when solving for u(ζα, tn+1). Substituting Eqs. (B.14)–(B.17) into the residual 
equations (B.9) at time tn+1 leads to a set of nonlinear algebraic equations in the unknowns [�vn+1], [�vm

n+1], and [�λ̄n+1], 
which are collectively gathered in the vector [�un+1]. These equations are solved via the Newton–Raphson method.

B.4. Newton–Raphson iteration

We begin by initially guessing the solution at time tn+1 is equal to the known solution at time tn , written as [un+1]0 =
[un], for which [�un+1]0 = [0]. We then generate a sequence of iterative solutions [un+1]i+1, where

[un+1]i+1 = [un+1]i + [�un+1]i+1 . (B.18)

Substituting Eqs. (B.14)–(B.18) into Eq. (B.9), evaluated at time tn+1, and keeping terms to first order in [�un+1]i+1 yields

[0] = [rv
n+1]i+1 =̇ [rv

n+1]i + [Kvv] [�v] + [Kvm] [�vm] + [Kvλ̄] [�λ̄] ,

[0] = [rm
n+1]i+1 =̇ [rm

n+1]i + [Kmv] [�v] + [Kmm] [�vm] + [Kmλ̄] [�λ̄] ,

[0] = [rλ̄
n+1]i+1 =̇ [rλ̄

n+1]i + [Kλ̄v] [�v] + [Kλ̄m] [�vm] + [Kλ̄λ̄] [�λ̄] .

(B.19)

In Eq. (B.19), the nine components of the tangent matrix [Kn+1]i are the partial derivatives of the residual vector equations 
(B.8) with respect to the unknown vectors. The stiffness matrix components for an LE implementation are provided in 
Appendix C.2. For a different mesh velocity equation, only [Kmv], [Kmm], [Kmλ̄], and [rm] are modified, however, other 
changes may be required to avoid well-known ALE issues associated with arbitrary mesh motions—such as the violation of 
the geometric conservation law [81,82].

Equation (B.19) may be compactly written as

[Kn+1]i [�un+1]i+1 = −[rn+1]i , (B.20)

where the tangent matrix [Kn+1]i and residual vector [rn+1]i are both calculated from [un+1]i , which is known. The degrees 
of freedom are updated according to Eq. (B.18), and the process is repeated until the 2-norm of [�un+1]i+1 falls below 
a specified iteration threshold εiter . At this point, the solution at time tn+1, u(ζα, tn+1), is assumed to be specified by 
[un+1]i+1 through Eqs. (B.1), (B.3), and (B.5).
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B.5. Local element calculations

The residual vector and tangent matrix in Eq. (B.20) consists of integrals over the parametric domain �. However, the 
basis functions NI and N̄ I have compact support and are only nonzero over a fixed number of elements. In practice, integrals 
are calculated locally over a single element �e to generate the elemental (or local) residual vector [re] and tangent matrix 
[Ke], which are then assembled to form their global counterparts [r] and [K], respectively [89].

Over any element, the fixed number of nonzero basis functions is denoted nen (number of element nodes) and the fixed 
number of nonzero Lagrange multiplier basis functions is denoted neln (number of element Lagrange multiplier nodes). 
The corresponding elemental basis function matrices are given by

[Ne] :=
[

Ne
1 [1] Ne

2 [1] . . . Ne
nen [1]

]
(B.21)

and

[N̄e] :=
[

N̄e
1 N̄e

2 . . . N̄e
neln

]
. (B.22)

Over a single element, at time tn , the fundamental unknowns are expanded as

v(ζα, tn) = [Ne] [ve
n] , vm(ζα, tn) = [Ne] [vm,e

n ] , and λ(ζα, tn) = [N̄e] [λ̄e
n] , (B.23)

where [ve
n], [vm,e

n ], and [λ̄e
n] are the local degrees of freedom at time tn . Eq. (B.23) is the local analog of Eqs. (B.1), (B.3), and 

(B.5). Furthermore, as the shape function matrices in Eqs. (B.21) and (B.22) correspond to all nonzero degrees of freedom 
over a single element, integrals over � are calculated as

∫
�

(
. . . [N] . . . [N̄] . . .

)
J m d� =

ne∑
e=1

∫
�e

(
. . . [Ne] . . . [N̄e] . . .

)
J m d� , (B.24)

where the matrices [N] and [N̄] in the integrand on the left-hand side are replaced by [Ne] and [N̄e], respectively, on the 
right-hand side. Standard finite element techniques are used to assumble [r] and [K] from their local counterparts, [re] and 
[Ke], according to Eq. (B.24) [89]. From now on, only local residual vector and tangent matrix calculations are provided. The 
details of the numerical integration are left to Appendix C.5.

B.6. Dohrmann–Bochev implementation

In this section, we demonstrate how the Dohrmann–Bochev contribution to the weak form (42) is incorporated into our 
finite element framework. Since the global projection criterion (40) can be simplified to a condition over individual elements 
(41), the Dohrmann–Bochev method naturally takes advantage of local element calculations. In particular, Eq. (41) allows 
one to express λ̆ in terms of λ over any element. With this result, the Dohrmann–Bochev direct Galerkin expression (42)
can be rewritten such that its contributions to the residual vector and tangent matrix are easily calculated.

We begin by considering Eq. (41) over a single element �e . Local basis functions N̆e
i are chosen for the space P1(�

e) (39). 
Note that in this manuscript, local basis functions are indexed by lower-case Latin letters, while global basis functions are 
indexed by upper-case Latin letters. During numerical integration, the element �e is mapped onto the unit square �� , 
which is parametrized by (ξ, η) ∈ [−1, 1] × [−1, 1] (see Appendix C.5). On the unit square, the basis functions of P1(�e), 
N̆e

i , are defined to span the space of all planes over the domain. As any plane can be expressed as a + bξ + cη = 0 for 
constants a, b, c ∈ R, the basis functions of P1(�

e) are given by N̆e
1 = 1, N̆e

2 = ξ , and N̆e
3 = η. We define the row vector 

of basis functions, the column vector of projected unknowns at time tn , and the column vector of projected unknown 
variations, respectively, as

[N̆e] :=
[

N̆e
1 N̆e

2 N̆e
3

]
, [λ̆e

n] :=

⎡
⎢⎢⎣

λ̆1(tn)

λ̆2(tn)

λ̆3(tn)

⎤
⎥⎥⎦ , and [δλ̆e] :=

⎡
⎢⎢⎣

δλ̆1

δλ̆2

δλ̆3

⎤
⎥⎥⎦ . (B.25)

On a single element �e at time tn+1, the projected quantities λ̆ and δλ̆ can be written as

λ̆(ζ α, tn+1) = [N̆e] [λ̆e
n+1] and δλ̆(ζα) = [N̆e] [δλ̆e] . (B.26)

With Eq. (B.26), and the separation of the projection criterion over individual elements (41), λ̆ can be expressed in terms 
of λ alone. Substituting Eqs. (B.5), (B.6)3, and (B.26) into Eq. (41) and rearranging terms yields
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[δλ̆e]T
{∫

�e

[N̆e]T [N̄e] d�

}
[λ̄e

n+1] = [δλ̆e]T
{∫

�e

[N̆e]T [N̆e] d�

}
[λ̆e

n+1] ∀ [δλ̆e] . (B.27)

Defining the matrices [Gλ̆λ̄,e] and [Hλ̆λ̆,e] according to

[Gλ̆λ̄,e] :=
∫
�e

[N̆e]T [N̄e] d� and [Hλ̆λ̆,e] :=
∫
�e

[N̆e]T [N̆e] d� , (B.28)

and owing to the arbitrariness of [δλ̆e], Eq. (B.27) simplifies to

[Gλ̆λ̄,e] [λ̄e
n+1] = [Hλ̆λ̆,e] [λ̆e

n+1] . (B.29)

The mass matrix [Hλ̆λ̆,e] in Eq. (B.29) is invertible, such that the projected surface tension coefficient matrix [λ̆e
n+1] is given 

in terms of the original surface tension coefficient matrix [λ̄e
n+1] as

[λ̆e
n+1] = [Hλ̆λ̆,e]−1 [Gλ̆λ̄,e] [λ̄e

n+1] . (B.30)

Eqs. (B.26)1 and (B.30) provide a way to calculate λ̆ given λ, on any element �e and at any time tn+1, in accordance with 
the projection definition (41).

Our final step is to substitute our results into Eq. (42) and calculate the Dohrmann–Bochev contribution to the tangent 
matrix and residual vector. To this end, the Dohrmann–Bochev contribution to the weak formulation (42) is rewritten in a 
more convenient form. The integrand of Eq. (42) is expressed as (δλ − δλ̆) (λ − λ̆) = (λ δλ − λ̆ δλ̆) − λ̆(δλ − δλ̆) − δλ̆(λ − λ̆), 
such that with the projection definition (41), the Dohrmann–Bochev contribution to the weak form (42) is given by

GDB =
ne∑

e=1

αDB

ζ

∫
�e

(
λδλ − λ̆ δλ̆

)
d� , (B.31)

where GDB is expressed as a sum over elements to take advantage of Eq. (B.30). Substituting Eqs. (B.5), (B.6)3, (B.26), and 
(B.30) into Eq. (B.31) yields

GDB =
ne∑

e=1

[δλ̄e]T αDB

ζ

{∫
�e

[N̄e]T[N̄e]d� − [Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1
(∫

�e

[N̆e]T[N̆e]d�

)
[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}
[λ̄e

n+1]

=
ne∑

e=1

[δλ̄e]T
{

αDB

ζ

∫
�e

[N̄e]T[N̄e] d� − αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}
[λ̄e

n+1] , (B.32)

where the second line is simplified by recognizing the integral in parenthesis is [Hλ̆λ̆,e] (B.28). As the result of Eq. (B.32)

is linear in [δλ̄e] and [λ̄e
n+1], its contributions to the elemental tangent matrix [Kλ̄λ̄,e

n+1 ] and residual vector [rλ̄,e
n+1] are easily 

calculated, as described in Appendix C. The local tangent matrices and residual vectors are then assembled to form their 
global counterparts using standard procedures.

B.6.1. Dohrmann–Bochev example
The lid-driven cavity problem demonstrates the need for inf–sup stabilization. When the Dohrmann–Bochev terms are 

turned off and the Stokes flow problem is solved on a coarse 16 × 16 mesh, checkerboard patterns in the x-velocity 
(Fig. 11a) and surface tension (Fig. 11b) are observed relative to the corresponding solution when the stabilization is in-
cluded (Figs. 11c and 11d, respectively). Moreover, a single square in the checkerboard pattern has length and width 1/16, 
and as the mesh size is changed, the checkerboard pattern changes in tandem. Such oscillations indicate the violation of the 
inf–sup condition [95]. Fig. 11d is also useful in highlighting the sharp surface tension spikes at the top two corners of the 
domain, which prevent us from having a meaningful error analysis of the surface tension in this problem—as discussed in 
Sec. 5.1.1.

B.7. Lagrangian finite element formulation

As described in Sec. 2.5, a Lagrangian scheme is recovered when the mesh velocity and material velocity are equal, i.e.

vm − v = 0 . (B.33)

The velocities vm and v belong to the same space of functions (see Sec. 4.2), as do their approximate counterparts vm
h and 

vh (36). We thus attain a Lagrangian scheme by setting all the nodal mesh and material velocities to be equal at all times 
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Fig. 11. Lid-driven cavity problem: the importance of Dohrmann–Bochev stabilization. (a),(b) Plots of the x-velocity (a) and surface tension (b) without 
Dohrmann–Bochev stabilization. Checkerboard patterns appear, with a characteristic length of 1/16 on a 16 × 16 mesh—a characteristic feature of the LBB 
instability. (c),(d) The same simulation is run with Dohrmann–Bochev stabilization terms, with the calculated x-velocity vx (c) and surface tension λ (d) 
not exhibiting oscillations. In (a) and (c), contours are provided at vx = 0 and vx = −0.12.

t , written as [vm(t)] − [v(t)] = [0]. Assuming [vm(t0)] − [v(t0)] = [0] at the initial time t0, the discretized Lagrangian mesh 
equation is given by

[�vm
n+1]i+1 − [�vn+1]i+1 = [0] , (B.34)

for all times tn+1 and iterations i + 1 (see Secs. B.3 and B.4).
To implement a Lagrangian scheme, Eq. (B.34) replaces the linearized and discretized mesh residual equation (B.19)2 of 

the ALE formulation. Accordingly, the Lagrangian analog to Eqs. (B.19) and (B.20) is given by⎡
⎢⎢⎣

[Kvv] [Kvm] [Kvλ̄]
−[1] [1] [0]
[Kλ̄v] [Kλ̄m] [Kλ̄λ̄]

⎤
⎥⎥⎦
⎡
⎢⎢⎣

[�v]
[�vm]
[�λ̄]

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

[rv]
[0]
[rλ̄]

⎤
⎥⎥⎦ , (B.35)

which is equivalently expressed as⎡
⎢⎣
( [Kvv] + [Kvm] ) [Kvλ̄]( [Kλ̄v] + [Kλ̄m] ) [Kλ̄λ̄]

⎤
⎥⎦
⎡
⎣ [�v]

[�λ̄]

⎤
⎦ = −

⎡
⎢⎣ [rv]

[rλ̄]

⎤
⎥⎦ . (B.36)

With Eq. (B.36), we implement a Lagrangian scheme within our ALE framework. The tangent matrix and residual vector 
components in Eq. (B.36) are calculated as before (see Appendix C), with the velocity v replacing the mesh velocity vm. 
Note that in a Lagrangian implementation, nonzero velocity boundary conditions lead to a moving boundary, according to 
Eqs. (11) and (B.33).

Appendix C. Tangent matrix & residual vector calculations

In this section, the residual vectors and tangent matrices required for our LE finite element implementation are cal-
culated, in a manner similar to Ref. [118]. To do so, several geometric quantities are linearized. We then detail how the 
residual vectors and tangent matrices are modified when the surface is constrained to not deform (relevant to Secs. 5.1 and 
5.2) and when the body force is a pressure drop acting everywhere normal to the surface (used in Sec. 5.3). In the former 
case, inertial terms are included in the calculation as well. However, these terms are not included when the fluid film can 
deform. We end with a brief description of how integrals are numerically calculated, and then present an overview of our 
code, which shows the structure of the residual vector and tangent matrix calculations.

C.1. Residual vector

In this section, the residual vectors [rv(t)], [rm(t)], and [rλ̄(t)] are calculated such that they satisfy Eqs. (B.7) and (B.8). 
We adopt a convention where if [δve] is a column vector, then ∂G/∂[δve] is a column vector as well. Also, the matrix [N],α̌
contains the partial derivatives of the basis functions with respect to ζα , and will be frequently used in our implementation.

We substitute the discretized arbitrary variations (B.6) and simplified form of the Dohrmann–Bochev weak form (B.32)
into the direct Galerkin expression ((43), (44)), remove inertial terms as they are assumed to be negligible, and rearrange 
the remaining terms to obtain



36 A. Sahu et al. / Journal of Computational Physics 407 (2020) 109253
G̃(t) = −
∫
�

[δv]T[N]T ρb J m d� +
∫
�

[δv]T[N]T
,α̌ π α̌β̌ a

β̌
J m d� +

∫
�

[δv]T[N]T
,α̌ aα̌ λ J m d�

+
∫
�

[δλ̄]T[N̄]T (aα̌ · v ,α̌

)
J m d� + αm

∫
�

[δvm]T[N]T
(

vm − (n ⊗ n
)

v
)

J m d� (C.1)

−
ne∑

e=1

[δλ̄e]T
{

αDB

ζ

∫
�e

[N̄e]T[N̄e] d� − αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}
[λ̄e

(t)] ,

where the first negative sign in the third line arises because GDB is subtracted in Eq. (44). In Eq. (C.1), we used the relation 
(for example) δv · ρb = [δv]T[N]T ρb, where [N] is defined in Eq. (B.2)1. The variation coefficient vectors in Eq. (C.1) are 
independent of ζα , and are moved outside the integrals to yield

G̃(t) = − [δv]T
∫
�

[N]T ρb J m d� + [δv]T
∫
�

[N]T
,α̌ π α̌β̌ a

β̌
J m d� + [δv]T

∫
�

[N]T
,α̌ aα̌ λ J m d�

+ [δλ̄]T
∫
�

[N̄]T (aα̌ · v ,α̌

)
J m d� + [δvm]T αm

∫
�

[N]T
(

vm − (n ⊗ n
)

v
)

J m d� (C.2)

−
ne∑

e=1

[δλ̄e]T
{

αDB

ζ

∫
�e

[N̄e]T[N̄e] d� − αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}
[λ̄e

(t)] .

Defining the velocity, mesh velocity, and surface tension residual vectors as

[rv(t)] = −
∫
�

[N]T ρb J m d� +
∫
�

[N]T
,α̌

(
πα̌β̌ a

β̌
+ aα̌ λ

)
J m d� , (C.3)

[rm(t)] = αm
∫
�

[N]T
(

vm − (n ⊗ n
)

v
)

J m d� , (C.4)

and

[rλ̄(t)] =
∫
�

[N̄]T (aα̌ · v,α̌

)
J m d� (C.5)

−
ne∑

e=1

{
αDB

ζ

∫
�e

[N̄e]T[N̄e] d� − αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}
[λ̄e

(t)] ,

Eq. (C.2) can be written as in Eq. (B.7).

C.2. Tangent matrix

The tangent matrix components resulting from the linearization given in Eq. (B.19) are defined as

[Kvv] := ∂([rv
n+1]i)

∂([vn+1]i)
T ,

[Kmv,e] := ∂([rm
n+1]i)

∂([vn+1]i)
T ,

[Kλ̄v,e] := ∂([rλ̄
n+1]i)

∂([vn+1]i)
T ,

[Kvm] := ∂([rv
n+1]i)

∂([vm
n+1]i)

T ,

[Kmm] := ∂([rm
n+1]i)

∂([vm
n+1]i)

T ,

[Kλ̄m] := ∂([rλ̄
n+1]i)

∂([vm
n+1]i)

T ,

[Kvλ̄] := ∂([rv
n+1]i)

∂([λ̄n+1]i)
T

,

[Kmλ̄] := ∂([rm
n+1]i)

∂([λ̄n+1]i)
T

,

[Kλ̄λ̄] := ∂([rλ̄
n+1]i)

∂([λ̄n+1]i)
T

,

(C.6)

with all components calculated from the known degree of freedom vector at iteration i, [un+1]i , alone. Before calculating 
the tangent matrix components, several geometric quantities are linearized for their subsequent use in the tangent matrix 
calculation.
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C.2.1. Unknown linearization
To linearize the residual vectors [rv

n+1]i+1, [rm
n+1]i+1, and [λ̄n+1]i+1 about the state u(tn+1)i , we rewrite Eq. (B.18) as

v i+1 = v i + �v i+1 , vm
i+1 = vm

i + �vm
i+1 , and λi+1 = λi + �λi+1 , (C.7)

where the time dependence is not written for notational simplicity. From now on, we also omit the subscript (i + 1) from 
the change in fundamental unknowns. In this section, we calculate how various geometric quantities, namely the position x, 
basis vectors aα̌ and aα̌ , metric components aα̌β̌

and aα̌β̌ , normal n, and Jacobian J m, differ between iterations i and i + 1
given the relations in Eq. (C.7).

With the backward Euler time discretization (B.13), the surface position is iterated according to

x̌i+1 = x̌i + �t �vm , (C.8)

from which we define �x̌ := �t �vm. With an equation for the position, and the definitions aα̌ = x̌,α̌ and aα̌β̌
= aα̌ · a

β̌
, it 

is straightforward to calculate

ai+1
α̌

= ai
α̌ + �t �vm

,α̌ (C.9)

and

ai+1
α̌β̌

= ai
α̌β̌

+ �t �vm
,α̌ · ai

β̌
+ �t �vm

,β̌
· ai

α̌ . (C.10)

The shorthand �aα̌ := �t �vm
,α̌

and �aα̌β̌
:= �t �vm

,α̌
·ai

β̌
+�t �vm

,β̌
·ai

α̌
will often be used in our linearization calculations.

To determine aα̌β̌

i+1, the identity ∂aα̌β̌ /∂aμ̌ν̌ = − 1
2 (aα̌μ̌ aβ̌ν̌ + aα̌ν̌ aβ̌μ̌) is required, such that �aα̌β̌ is calculated according 

to �aα̌β̌ = (∂aα̌β̌ /∂aμ̌ν̌ ) �aμ̌ν̌ . After rearranging terms and using the symmetry of the metric components, one obtains

aα̌β̌

i+1 = aα̌β̌

i − aα̌μ̌
i aβ̌ν̌

i

[
�t �vm

,μ̌ · ai
ν̌ + �t �vm

,ν̌ · ai
μ̌

]
. (C.11)

The calculation of aα̌
i+1 is straightforward, as aα̌ = aα̌β̌ a

β̌
; however terms are rearranged to simplify our numerical imple-

mentation. Introducing the identity tensor 1 in curvilinear coordinates as 1 = a
λ̌
⊗ aλ̌ + n ⊗ n, we find

�aα̌ = �(aα̌β̌ aβ) = aα̌β̌ �a
β̌

+ ∂aα̌β̌

∂aμ̌ν̌
�aμ̌ν̌ a

β̌

[0pt] = aα̌β̌ �a
β̌

− a
β̌

(
�aμ̌ · aν̌ + �aν̌ · aμ̌

)
aα̌μ̌ aβ̌ν̌

= aα̌β̌ �a
β̌

− (
�aμ̌ · aν̌

)
a

β̌
aα̌μ̌ aβ̌ν̌ − (

�aν̌ · aμ̌

)
a

β̌
aα̌μ̌ aβ̌ν̌

= aα̌β̌ 1 �a
β̌

− (
�aμ̌ · aβ̌

)
a

β̌
aα̌μ̌ − (

�aν̌ · aα̌
)

aν̌

= aα̌β̌
[

a
λ̌
⊗ aλ̌ + n ⊗ n

]
�a

β̌
− (

a
β̌

⊗ aβ̌
)
�aμ̌ aα̌μ̌ − (

aν̌ ⊗ aα̌
)
�aν̌

=
[
aα̌β̌

(
n ⊗ n

)− aβ̌ ⊗ aα̌
]
�a

β̌
.

(C.12)

In the third line of Eq. (C.12) the metric components were used to raise indices, in the fourth line the identity tensor 
was introduced and the last two terms were rewritten using dyadic products, and in the last line dummy indices were 
rearranged. With the result of Eq. (C.12), one obtains

aα̌
i+1 = aα̌

i +
[
aα̌β̌

i ni ⊗ ni − aβ̌

i ⊗ aα̌
i

]
�t �vm

,β̌
. (C.13)

To calculate �n, note n · n = 1, which implies �n · n = 0, so �n is completely specified by its in-plane components: 
�n = aα̌(�n · aα̌). Next, observe �n · aα̌ = �(n · aα̌) − n · �aα̌ = −n · �aα̌ , as n is orthogonal to aα̌ . Writing �n as 
�n = −(aα̌ ⊗ n)�aα̌ , we find ni+1 to be given by

ni+1 = ni − (
aα

i ⊗ ni
)
�t �vm

,α̌ . (C.14)

Finally, to calculate � J m, we begin with the definition of the normal vector n as n = (a1̌ × a2̌)/ J m, such that �n =
(�a1̌ × a2̌)/ J m + (a1̌ × �a2̌)/ J m + (a1̌ × a2̌) �(1/ J m). Substituting (a1̌ × a2̌) �(1/ J m) = −n (� J m/ J m) into the expression 
for �n, contracting both sides with n, and remembering �n · n = 0 leads to
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� J m = �a1̌ · (a2̌ × n
)+ �a2̌ · (n × a2̌

)
. (C.15)

Substituting n = (a1̌ × a2̌)/ J m into the above equation, and using the vector triple product rule, yields

� J m = 1

J m

[
�a1̌ · (a2̌2̌ a1̌ − a2̌1̌ a2̌

)+ �a2̌ · (a1̌1̌ a2̌ − a1̌2̌ a1̌

)]

= J m
[
�a1̌ · (a1̌1̌ a1̌ + a1̌2̌ a2̌

)+ �a2̌ · (a2̌2̌ a2̌ + a2̌1̌ a1̌

)]

= J m
[
�a1̌ · a1̌ + �a2̌ · a2̌

]
= J m

[
aα̌ · �aα̌

]
,

(C.16)

where in the second line we substituted a1̌1̌ = ( J m)2 a2̌2̌ , a1̌2̌ = a2̌1̌ = −( J m)2 a2̌1̌ , and a2̌2̌ = ( J m)2 a1̌1̌ because aα̌β̌ is the 
matrix inverse of aα̌β̌

, and in the third line simplified with aα̌ = aα̌β̌ a
β̌

. Accordingly, J m
i+1 is found to be

J m
i+1 = J m

i + J m
i

(
aα̌

i · �t �vm
,α̌

)
. (C.17)

C.2.2. Local component calculations
The tangent matrix components are calculated by substituting Eq. (C.7), along with the corresponding changes in geomet-

ric quantities described above, into the residual equations (C.3)–(C.5) and rearranging terms to match the structure shown 
in Eq. (B.19). As described in Sec. B.5, in practice only local residual vectors and tangent matrices are numerically evaluated. 
We accordingly provide local results here, where elemental vector and matrix quantities are denoted with a superscript e.

We present the calculation of [Kλ̄v,e], [Kλ̄m,e], and [Kλ̄λ̄,e] to demonstrate our procedure, and the remaining components 
of the tangent matrix will be provided without calculation. Substituting Eq. (C.7) into Eq. (C.5) and keeping only terms up 
to first order in �u over the element �e , one obtains

[rλ̄,e
n+1]i+1 =

∫
�e

[N̄e]T (aα̌
i · v i

,α̌

)
J m

i d� +
∫
�e

[N̄e]T (�aα̌ · v i
,α̌

)
J m

i d�

+
∫
�e

[N̄e]T (aα̌
i · �v,α̌

)
J m

i d� +
∫
�e

[N̄e]T (aα̌
i · v i

,α̌

)
� J d� (C.18)

−
{

αDB

ζ

∫
�e

[N̄e]T[N̄e] d� − αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}(
[λ̄e

n] + [�λ̄
e]
)

.

Substituting �aα̌ from Eq. (C.13) and � J from Eq. (C.17) into Eq. (C.18), recognizing the first term on the right-hand side 
and the Dohrmann–Bochev term on the last line involving [λ̄e

n] combine to be the residual at iteration i, and rearranging 
terms, we find

[rλ̄,e
n+1]i+1 = [rλ̄,e

n+1]i +
∫
�e

[N̄e]T v i
,α̌ ·

[
aα̌β̌

i ni ⊗ ni − aβ̌

i ⊗ aα̌
i

]
�t �vm

,β̌
J m

i d�

+
∫
�e

[N̄e]T (aα̌
i · �v,α̌

)
J m

i d� +
∫
�e

[N̄e]T (aα̌
i · v i

,α̌

) (
aλ̌

i · �t �vm
,λ̌

)
J m d�

−
{

αDB

ζ

∫
�e

[N̄e]T[N̄e] d� − αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}
[�λ̄

e] .

(C.19)

Equation (C.19) is now expressed entirely in terms of known quantities at iteration i and the changes to the fundamental 
unknowns. The changes in the fundamental unknowns are discretized as in Eqs. (B.14)–(B.16), substituted into Eq. (C.19), 
and the unknown vectors are moved outside the resultant integrals to give

[rλ̄,e
n+1]i+1 = [rλ̄,e

n+1]i +
{∫

�e

[N̄e]T v i
,α̌ ·

[
aα̌β̌

i ni ⊗ ni − aβ̌

i ⊗ aα̌
i

]
[Ne]

,β̌
�t J m

i d�

}
[�vm,e]

+
{∫

e

[N̄e]T (aα̌
i · v i

,α̌

)
aλ̌

i [Ne]
,λ̌

�t J m d�

}
[�vm,e]
�
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+
{∫

�e

[N̄e]T aα̌
i [Ne],α̌ J m

i d�

}
[�ve]

−
{

αDB

ζ

∫
�e

[N̄e]T[N̄e] d� − αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e]

}
[�λ̄

e] . (C.20)

In comparing Eq. (C.20) with Eq. (B.19)3, the tangent matrices for this equation are given by

[Kλ̄v,e] =
∫
�e

[N̄e]T aα̌
i [Ne],α̌ J m

i d� , (C.21)

[Kλ̄m,e] =
∫
�e

[N̄e]T v i
,α̌ ·

[
aα̌β̌

i ni ⊗ ni − aβ̌

i ⊗ aα̌
i

]
[Ne]

,β̌
�t J m

i d�

+
∫
�e

[N̄e]T (aα̌
i · v i

,α̌

)
aλ̌

i [Ne]
,λ̌

�t J m d� ,

(C.22)

and

[Kλ̄λ̄,e] = − αDB

ζ

∫
�e

[N̄e]T[N̄e] d� + αDB

ζ
[Gλ̆λ̄,e]T[Hλ̆λ̆,e]−1[Gλ̆λ̄,e] . (C.23)

The presence of the matrices [Gλ̆λ̄,e] and [Hλ̆λ̆,e] in Eqs. (C.20) and (C.23) require a minor modification to the structure 
of standard finite element codes. For each element, [Gλ̆λ̄,e] and [Hλ̆λ̆,e] are calculated as integrals over the element (B.28); 
they are themselves assembled during the iteration loop over Gauss quadrature points. Once the loop is complete, the 
contributions of the last terms in Eq. (C.5), as well as the terms in Eq. (C.23), are calculated and assembled. The organization 
of this calculation is highlighted in Appendix C.6.

An identical procedure is followed to determine the remaining local tangent matrix components. For Eq. (B.19)1 such an 
analysis yields

[Kvv,e] = ζ

∫
�e

[Ne]T
,α̌

(
aγ̌

i ⊗ aα̌
i

) [Ne],γ̌ J m
i d� + ζ

∫
�e

[Ne]T
,α̌

(
ai

β̌
⊗ aβ̌

i

)
aγ̌ α̌

i [Ne],γ̌ J m
i d� , (C.24)

[Kvm,e] = −
∫
�e

[Ne]T ρb
(
aα̌

i · [Ne],α̌
)
�t J m

i d�

+ ζ

∫
�e

[Ne]T
,α̌ aγ̌

i

(
v i

,γ̌ · ni
)

aα̌β̌

i

(
ni · [Ne]

,β̌

)
�t J m

i d�

− ζ

∫
�e

[Ne]T
,α̌ aγ̌

i

(
v i

,γ̌ · aβ̌

i

) (
aα̌

i · [Ne]
,β̌

)
�t J m

i d�

+ ζ

∫
�e

[Ne]T
,α̌ ni

(
aα̌

i · v i
,γ̌

)
aγ̌ β̌

i

(
ni · [Ne]

,β̌

)
�t J m

i d�

− ζ

∫
�e

[Ne]T
,α̌

(
aα̌

i · v i
,γ̌

) (
aβ̌

i ⊗ aγ̌
i

) [Ne]
,β̌

�t J m
i d�

+ ζ

∫
�e

[Ne]T
,α̌

(
v i

,γ̌ · aα̌
i

)
aγ̌

i

(
aβ̌

i · [Ne]
,β̌

)
�t J m

i d�

+ ζ

∫
e

[Ne]T
,α̌ aλ̌

i aγ̌ α̌
(
ni · v i

,γ̌

) (
ni · [Ne]

,λ̌

)
�t J m

i d�
�
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− ζ

∫
�e

[Ne]T
,α̌ ai

β̌
aα̌γ̌

i

(
v i

,γ̌ · aλ̌
i

) (
aβ̌

i · [Ne]
,λ̌

)
�t J m

i d�

− ζ

∫
�e

[Ne]T
,α̌ ai

β̌

(
aβ̌

i · v i
,γ̌

)
aγ̌ μ̌

i aα̌ν̌
i

(
ai
ν̌ · [Ne],μ̌ + ai

μ̌ · [Ne],ν̌
)
�t J m

i d�

+ ζ

∫
�e

[Ne]T
,α̌ aα̌γ̌

i

(
v i

,γ̌ · aβ̌

i

) [Ne]
,β̌

�t J m
i d�

+ ζ

∫
�e

[Ne]T
,α̌ aα̌γ̌

i ai
β̌

(
aβ̌

i · v i
,γ̌

) (
aλ̌

i · [Ne]
,λ̌

)
�t J m

i d�

+
∫
�e

[Ne]T
,α̌ aα̌β̌

i ni ⊗ ni [Ne]
,β̌

λi �t J m
i d�

−
∫
�e

[Ne]T
,α̌ aβ̌

i ⊗ aα̌
i [Ne]

,β̌
λi �t J m

i d�

+
∫
�e

[Ne]T
,α̌ aα̌

i λi
(
aβ̌

i · [Ne]
,β̌

)
�t J m

i d� , (C.25)

and

[Kvλ̄,e] =
∫
�e

[Ne]T
,α̌ aα̌

i [N̄e] J m
i d� , (C.26)

where body forces ρb are assumed to be independent of the surface geometry. For Eq. (B.19)2 we find

[Kmv,e] = −αm
∫
�e

[Ne]T (ni ⊗ ni
) [Ne] J m

i d� , (C.27)

[Kmm,e] = αm
∫
�e

[Ne]T vm(aα̌
i · [Ne],α̌

)
�t J m

i d� + αm
∫
�e

[Ne]T ni
(

v · aα̌
i

) (
ni · [Ne],α̌

)
�t J m

i d�

+ αm
∫
�e

[Ne]T (v i · ni
) (

aα̌
i ⊗ ni

) [Ne],α̌ �t J m
i d� + αm

∫
�e

[Ne]T [Ne] J m
i d�

− αm
∫
�e

[Ne]T (ni ⊗ ni
)

v i
(
aα̌

i · [Ne],α̌
)
�t J m

i d� , (C.28)

and

[Kmλ̄,e] = [0] . (C.29)

C.3. Modification for a fixed surface

In this section, we continue to work only with the local residual vector and tangent matrix. Constraining the fluid 
surface to be fixed introduces a new unknown variable p, and corresponding variation δp, which are locally expanded in 
the {Ni(ζ

α)} basis as

p(ζα, tn+1) = [Ne
(1)] [pe

n+1] and δp(ζα) = [Ne
(1)] [δpe] , (C.30)

where [pe
n+1] are the local pressure degrees of freedom at time tn+1. As p is a scalar quantity, [pe

n+1] and [δpe] are nen× 1
vectors and are multiplied by the 1 ×nen vector of basis functions, which is denoted by [Ne

(1)
] in contrast to the 3 ×(3 ·nen)

matrix [Ne] introduced in Eq. (B.2).
As the mesh is constrained to remain stationary, vm = 0, all geometric quantities are fixed, and there are no mesh 

velocity degrees of freedom. The weak form provided in Eq. (50) is rewritten at time tn+1 as in Eq. (B.7), yielding
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G̃(tn+1) =
ne∑

e=1

(
[δve]T[rv,e

n+1] + [δλ̄e]T[rλ̄,e
n+1] + [δpe]T[rp,e

n+1]
)

= 0 , (C.31)

for all variation vectors [δve], [δλ̄e], and [δpe]. The residual vector [rp,e
n+1] is defined by

[rp,e
n+1] := ∂G̃(tn+1)

∂[δpe] , (C.32)

for the direct Galerkin expression provided in Eqs. (50) and (C.31). Following the same procedure as in Appendix C.1 leads 
to

[rp,e
n+1] =

∫
�

[Ne
(1)]T n · v J m d� . (C.33)

Furthermore, the first term in Eq. (C.3) is modified by replacing ρb with pn, which gives

[rv,e
n+1] = −

∫
�

[Ne]T p n J m d� +
∫
�

[Ne]T
,α̌

(
πα̌β̌ a

β̌
+ aα̌ λ

)
J m d� . (C.34)

The form of [rλ̄,e
n+1] is unchanged from Eq. (C.5).

In removing the mesh velocity degrees of freedom and introducing the pressure degrees of freedom, there are once more 
nine tangent matrix components. The matrices [Kvv,e

n+1], [Kvλ̄,e
n+1], [Kλ̄v,e

n+1], and [Kλ̄λ̄,e
n+1 ] are unchanged, and the weak form (50)

will modify only [Kpv,e
n+1] and [Kvp,e

n+1]. Accordingly, [Kpλ̄,e
n+1 ], [Kλ̄p,e

n+1 ], and [Kpp,e
n+1] are all zero. As Eq. (C.33) is linear in v , the 

tangent matrix component [Kpv,e
n+1] is given by

[Kpv,e
n+1] =

∫
�

[Ne
(1)]T (n · [Ne]) J m d� . (C.35)

The first term in Eq. (C.34) is linear in p, and we similarly calculate

[Kvp,e
n+1] =

∫
�

[Ne]T n [Ne
(1)] J m d� . (C.36)

With the residual vectors ((C.33), (C.34)) and tangent matrix components ((C.35), (C.36)), our general ALE finite element 
framework has been adapted to solve for fixed-surface fluid flows.

C.3.1. Inertial contributions
For simplicity, the subscript ρ is used to denote a quantity which arises only due to inertia. In this section, the inertial 

contributions to the local residual vector and tangent matrix are calculated. The inertial contribution to the weak form 
component Gv (27)—denoted Gv,ρ—can be written as

Gv,ρ =
∫
�

δv · ρ v̇ J m d� =
ne∑

e=1

∫
�e

[δve]T [Ne]T ρ v̇ J m d�

=
ne∑

e=1

[δve]T
∫
�e

[Ne]T ρ v̇ J m d� .

(C.37)

Substituting Eq. (10), with vm = 0 by construction, into Eq. (C.37) leads to the inertial contribution to the local residual 
vector at time tn+1, which is expressed as

[rv,e
ρ,n+1] =

∫
�e

[Ne]T ρv ′ J m d� +
∫
�e

[Ne]T ρ
(

v ,α̌ ⊗ aα̌
)

v J m d� . (C.38)

The time derivative v ′ is approximated with an implicit backwards-Euler discretization, given by

v ′(ζα, tn+1) = 1

�t

(
v(ζα, tn+1) − v(ζα, tn)

)
. (C.39)

Substituting Eq. (C.39) into the residual vector in Eq. (C.38), evaluated at time tn+1, approximating v(ζα, tn+1) with v i+1 =
v i + �v , and keeping terms to first order in �v , we obtain
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[rv,e
ρ,n+1]i+1 = [rv,e

ρ,n+1]i +
∫
�e

[Ne]T ρ

�t
�v J m d�

+
∫
�e

[Ne]T ρ
(
�v ,α̌ ⊗ aα̌

)
v i J m d� +

∫
�e

[Ne]T ρ
(

v i
,α̌ ⊗ aα̌

)
�v J m d� ,

(C.40)

where [rv,e
ρ,n+1]i is given by Eq. (C.38) evaluated at v(t + �t)i , written as

[rv,e
ρ,n+1]i =

∫
�e

[Ne]T ρ

�t

(
v i − v(t)

)
J m d� +

∫
�e

[Ne]T ρ
(

v i
,α̌ ⊗ aα̌

)
v i J m d� . (C.41)

From Eq. (C.40), the tangent matrix contribution from the inertial terms is found to be given by

[Kvv,e
ρ,n+1] =

∫
�e

[Ne]T ρ

�t
[Ne] J m d� +

∫
�e

[Ne]T ρ
(

v i · aα̌
) [Ne],α̌ J m d�

+
∫
�e

[Ne]T ρ
(

v i
,α̌ ⊗ aα̌

) [Ne] J m d� .

(C.42)

C.4. Modification for a normal body force

In this section, we discuss how the finite element formulation for a curved and deforming fluid film is modified when 
the constant body force ρb is replaced by pn, a pressure normal to the surface. The body force term in Eq. (C.3) is modified, 
and the local residual vector at time tn+1 is rewritten as

[rv,e
n+1] = −

∫
�e

[Ne]T pn J m d� +
∫
�e

[Ne]T
,α̌

(
πα̌β̌ a

β̌
+ aα̌ λ

)
J m d� . (C.43)

The linearization of the first term yields an additional contribution to the tangent matrix [Kvm,e
n+1 ], given by

−
∫
�e

[Ne]T p �n J m
i d� . (C.44)

Denoting the additional tangent matrix contribution as [Kvm,e
p,n+1], and calculate it by substituting �n (C.14) into Eq. (C.44)

and moving the mesh velocity degrees of freedom outside the integral, leads to

[Kvm,e
p,n+1] =

∫
�e

[Ne]T (aα̌
i ⊗ ni

) [Ne],α̌ p �t J m d� . (C.45)

By modifying our residual vector and tangent matrix as in Eqs. (C.44) and (C.45), we simulate body forces normal to the 
surface as it deforms over time.

C.5. Numerical integration

To numerically evaluate integrals over a single element, we first consider a one-dimensional integral over the non-empty 
portion of the element boundary �t

e for which ζ 2 is fixed and ζ 1 ranges from ζ 1
a to ζ 1

b . We map the parametric domain 
ζ 1 ∈ [ζ 1

a, ζ 1
b] to the interval [−1, 1], which is parametrized by the scaled variable ξ , and on this rescaled domain we sum 

the values of the integrand at ξ = {−√3/5, 0, 
√

3/5} with corresponding weights {5/9, 8/9, 5/9}, as is standard for numerical 
integration using Gaussian quadrature [119].

To calculate two-dimensional areal integrals over an element of the parametric domain �e , we perform an analo-
gous procedure. The element �e is parametrized by (ζ 1, ζ 2) = [ζ 1

a, ζ 1
b] × [ζ 2

a, ζ 2
b], which we map to the unit square �� , 

parametrized by (ξ, η) ∈ [−1, 1] × [−1, 1]. The integrand is then calculated at the nine quadrature points with their corre-
sponding weights.

C.6. Code structure

We have now presented the computational details relevant to our ALE finite element formulation. A high-level overview 
of how our code is structured is shown in Algorithm 1.
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Algorithm 1. C++ pseudocode of the ALE finite element method.

1 // mesh and basis function calculations
2 generate_mesh(); generate_basis_functions();
3
4 for (time_index = 0; time_index < num_time_steps; ++time_index) {
5
6 initialize_u_vector(); initialize_delta_u();
7
8 while (norm(delta_u) > newton_tolerance) {
9 // initialize global residual vector and tangent matrix

10 initialize_r_vector(); initialize_K_matrix();
11
12 for (element_index = 0; element_index < num_elements; ++element_index) {
13 // Dohrmann--Bochev H and G matrices
14 initialize_DB_H_matrix(); initialize_DB_G_matrix();
15
16 // local residual vector and tangent matrix
17 initialize_element_r_vector(); initialize_element_K_matrix();
18
19 for (gauss_pt_idx = 0; gauss_pt_idx < num_gauss_pts; ++gauss_pt_idx) {
20 // residual vector calculations: Appendix C.1
21 increment_element_r_vector(u_vector);
22 // tangent matrix calculations: Appendix C.2
23 increment_element_K_matrix(u_vector);
24
25 // Dohrmann--Bochev H and G matrix assembly: Appendix C.2
26 increment_DB_H_matrix(u_vector);
27 increment_DB_G_matrix(u_vector);
28 }
29
30 // add Dohrmann--Bochev terms to tangent matrix and residual vector:
31 // Appendix C.2
32 add_DB_terms(DB_H_matrix, DB_G_matrix,
33 element_K_matrix, element_r_vector);
34
35 // assemble global counterparts
36 assemble_K_matrix(K_matrix, element_K_matrix);
37 assemble_r_vector(r_vector, element_r_vector);
38 }
39
40 // apply boundary conditions
41 apply_boundary_conditions(K_matrix, r_vector);
42
43 solve_delta_u(delta_u, K_matrix, r_vector);
44 u_vector += delta_u;
45 }
46
47 output_u_vector();
48 }

Appendix D. Numerical benchmarks

In this section, we supplement the validation of the LE finite element method in Sec. 5 by considering four simple 
benchmark problems for which analytical solutions are known. In each case, the numerical calculation of the x-velocity 
and surface tension are plotted against their analytical results. The L2-errors of the velocity and surface tension upon 
mesh refinement are also provided. All simulations are run on a stationary, flat mesh corresponding to the spatial domain 
(x, y) ∈ [0, 1] × [0, 1], and in three of the four cases the analytical solution lies in our finite-dimensional solution space 
Uh . The remaining case demonstrates the convergence of the surface tension as the mesh is refined. Dohrmann–Bochev 
stabilization is used in all cases.
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Fig. 12. Numerical simulation of the hydrostatic problem. The true solution (solid red line) is compared to the numerical solution (dashed blue line) for the 
x-velocity (a) and surface tension (b). Note the x-velocity error in (a) is multiplied by 1017. The L2-error in the velocity (blue circles) and surface tension 
(red squares) is plotted in (c), as a function of the element height and width h, which ranges from 1/2 to 1/128. Errors in the x-velocity remain below 
the machine precision εmp ≈ 1.1 · 10−16, while errors in the surface tension are O(10−14). Errors in general are expected to increase as the number of 
elements, and therefore the number of degrees of freedom, increase.

Fig. 13. Numerical solution of Couette flow. The x-velocity as a function of y-position and surface tension as a function of x-position are provided in (a) and 
(b), respectively, and show excellent agreement between numerical and analytical solutions (dashed blue lines and solid red lines, respectively). Note the 
y-axis in (b) is multiplied by 1016. The L2-errors in the velocity (blue circles) and surface tension (red squares) is shown in (c) as a function of the mesh 
size h, as the mesh is refined in both the x and y directions. The increase in the error may again be due to the addition of small errors in each degree of 
freedom, as the number of degrees freedom increases.

D.1. Hydrostatic fluid

We first consider a fluid at rest which is acted upon by gravity, such that the body force is given by ρb = −ρg e y . Units 
are chosen such that ρg = 1, and the surface tension is specified to be zero at the bottom of the domain. The analytical 
solution is given by v = 0 and λ = y. We solve the problem numerically by specifying v = 0 on all four boundaries and 
λ = 0 on the bottom edge. Results from our numerical solution are shown in Fig. 12; note the scale of the x-axis in part (a).

D.2. Couette flow

We next simulate Couette flow, in which fluid fills the space between two parallel plates; the bottom plate is stationary 
while the top plate moves tangentially at constant speed V . The bottom plate is located at y = 0, the top plate at y = 1, 
and furthermore units are chosen such that V = 1. In this case, the analytical solution is given by v = y ex and λ = 0.

In our numerical solution, we specify Dirichlet boundary conditions rather than formulating the degrees of freedom to be 
periodic on the left and right edges of the domain. Thus v = ex on the top edge, v = 0 on the bottom edge, and v = y ex on 
the left and right edges. Furthermore, λ is specified to be zero on the left edge. The results of our simulation are provided 
in Fig. 13; note the y-axis in (b) is multiplied by 1016.

D.3. Couette flow with a body force

To demonstrate the convergence of the surface tension in our numerical method, we again consider the case of Couette 
flow, yet now with a body force ρb = −3y2 e y . In this case, the analytical solution is given by v = y ex and λ = y3. The 
numerical solutions and convergence of the surface tension are shown in Fig. 14.
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Fig. 14. Numerical solution of Couette flow, with a body force ρb = −3y2 e y . The x-velocity (a) and surface tension (b) as a function of y-position show 
excellent agreement between numerical and analytical solutions (dashed blue lines and solid red lines, respectively). The L2-errors in the surface tension 
(red squares) is shown in (c) as a function of the mesh size h, as the mesh is refined in both the x and y directions, and converges quadratically as 
expected. As the analytical solution for the velocity lies in Vh , the velocity errors (not shown) are O(10−16) as in Fig. 13c.

Fig. 15. Numerical solution of Hagen–Poiseuille flow. The x-velocity is parabolic in y (a) and the surface tension is linear in x (b); in both figures the 
numerical result is shown with a dashed blue line and the analytical result with a solid red line. The L2-error in velocity (blue circles) and surface tension 
(red squares) is shown in (c).

D.4. Hagen–Poiseuille flow

The final benchmark problem considered is Hagen–Poiseuille flow, for which a surface tension change across the length 
of a stationary channel drives flow. No-slip boundary conditions on the top and bottom walls of the channel, located at 
y = 1 and y = 0, respectively, are assumed. Units are chosen such that the surface tension change per length �λ/L = 8. 
Furthermore setting the viscosity to be unity and arbitrarily choosing λ = 0 at x = 0, the analytical solution is given by 
v = 4 y (1 − y) ex and λ = 8x.

We specify Dirichlet boundary conditions on all four edges of the square domain, rather than incorporating the surface 
tension change across the domain into the weak form through the boundary traction. We set v = 0 on the top and bottom 
edges, v = 4 y (1 − y) ex on the left and right edges, and specify λ = 0 on the left edge. Our simulation finds a parabolic 
velocity profile throughout the domain and correctly calculates the surface tension change across the domain. Numerical 
results are shown in Fig. 15. Once again, there is excellent agreement with the analytical solution.

Appendix E. Movies

E.1. Curved and deforming fluid film

The movie provided at youtu.be/FUx8fGXuzqY shows an initially cylindrical fluid film which is perturbed and then 
allowed to dynamically evolve over time. The color and color bar in the movie show the surface tension, whose variations 
mediate an instability via in-plane fluid flow. The LE simulation is run on a 10 × 40 mesh, from time t = 0 to t = 35. 
Snapshots of the simulation are found in Fig. 5 in the main text.

E.2. Lagrangian scheme fails lid-driven cavity benchmark

This movie, which can be found at youtu.be/FCoShaa_FhM with snapshots presented in Fig. 16, shows a Lagrangian 
finite element scheme modeling the well-known lid-driven cavity problem. Due to in-plane velocity gradients, elements 

https://youtu.be/FUx8fGXuzqY
https://youtu.be/FCoShaa_FhM
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Fig. 16. Lagrangian simulation of the lid-driven cavity problem at times t = 1 (a), t = 10 (b), and t = 20 (c). The video is provided at 
youtu.be/FCoShaa_FhM; a description is given in Sec. E.2.

deform over time. The color and color bar in the movie indicate the x-component of the velocity, which is incorrect at late 
times. The cavity is represented by a unit square, the mesh is 32 × 32 elements, and the time step �t = 1/640. After 20 
time steps, nodes on the top edge move by a mesh spacing due to the velocity boundary condition at the top edge. Note in 
particular the top right corner, where after 20 time steps two nodes coincide, causing the simulation to fail.

E.3. Comparison of Lagrangian and LE schemes in modeling a fluid film

This movie, provided at youtu.be/wnXuK6d3WTQ, compares an LE scheme (top) and Lagrangian scheme (bottom) in 
modeling an unstable cylindrical fluid film. The movie runs from time t = 0 to t = 35, the color and color bars indicate the 
surface tension, and both simulations use a 30 × 60 mesh. While both schemes capture the same solution, the Lagrangian 
nodes move in-plane due to the fluid flow. As a result, at later times there are comparatively more nodes in the left 
spherical bulb, and fewer nodes in the central tubular region. The underresolution of the tube in the Lagrangian scheme 
leads to larger errors. Snapshots from this movie are shown in Figs. 10d–10f in the main text.

Appendix F. List of important symbols

1 identity tensor in R3

aα in-plane covariant basis vectors
aα̌ in-plane covariant basis vectors, induced by ζα

parametrization
aα in-plane contravariant basis vectors
aα,β partial derivative of aα w.r.t. θβ

aα;β covariant derivative of aα w.r.t. θβ

aαβ covariant metric
aαβ contravariant metric
αm parameter for mesh weak form unit consistency
αDB Dohrmann–Bochev parameter
b body force per unit mass
bαβ covariant curvature components
bαβ contravariant curvature components
c material velocity minus mesh velocity
cα̌ component of c , expressed in the ζα parametriza-

tion
Cm(�) space of scalar functions on � with m continuous 

derivatives
χ multiplicative factor of cylinder perturbation
δ( · ) arbitrary variation of ( · )
[δ( · )e] discretized local variation of ( · )
G direct Galerkin expression
� boundary of parametric domain �
�t Neumann portion of �
�v Dirichlet portion of �
�α

λμ Christoffel symbols of the second kind
h finite element size
H mean curvature
H2(�) Sobolev space of order two on �

J areal surface expansion relative to reference con-
figuration

J m Jacobian determinant from � to P
J m
� Jacobian determinant from � to ∂P

K Gaussian curvature
[K] global tangent matrix
[Ke] local tangent matrix of element e
L2(�) space of square-integrable functions on �
λ surface tension, enforces areal incompressibility
λ̆ projection of λ onto �̆
� functional space of surface tensions λ
�̆ functional space of projected surface tensions λ̆
�h finite-dimensional subspace of �
[λ̄] global surface tension degrees of freedom (DOFs)
[λ̄e] local surface tension DOFs
[λ̆e] local projected surface tension DOFs
n normal vector to the surface
ne number of elements
nen number of element nodes
neln number of Lagrange multiplier element nodes
nln number of Lagrange multiplier nodes
nn number of nodes
[N] global shape function matrix
[Ne] local shape function matrix
[N̄] global Lagrange multiplier shape function matrix
[N̄e] local Lagrange multiplier shape function matrix
[N̆e] local projected Lagrange multiplier shape function 

matrix
ν in-plane unit normal to the patch boundary
� parametric domain of ζα

�e discretized element of �

https://youtu.be/FCoShaa_FhM
https://youtu.be/wnXuK6d3WTQ
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p pressure normal to the surface
P functional space of normal pressures
Ph finite-dimensional subspace of P
P patch of the surface under consideration
∂P boundary of the patch P
∂tP Neumann portion of ∂P
∂vP Dirichlet portion of ∂P
Pn(�e) space of polynomial functions of order n on �e

παβ in-plane contravariant viscous stress components
Qn(�e) space of bi-polynomial functions of order n on �e

[r] global residual vector
[re] local residual vector of element e
ρ areal mass density of the current surface
σαβ in-plane contravariant couple-free components of 

the surface stress
T traction at the patch boundary
T α stress vector along a curve of constant θα

τtheo theoretical cylindrical fluid film time scale
τsim numerical cylindrical fluid film time scale
θα surface-fixed parametrization of the surface
u general vector of all unknowns
[u] global DOF vector for all unknowns

[ue] local DOF vector for all unknowns
v material velocity
[ve] local velocity DOFs
v̇ material acceleration
V functional space of velocities and mesh velocities
Vh finite-dimensional subspace of V resulting from 

discretization
V0 subset of V which vanishes on �v

V0,h finite-dimensional subspace of V0

vm mesh velocity
[vm,e] local mesh velocity DOF vector
x surface position in R3

x̂ surface position, expressed in ξα coordinates
x̌ surface position, expressed in ζα coordinates
xb position of a point on the patch boundary
ξα convected coordinate parametrization of the sur-

face
ζ shear viscosity coefficient for in-plane flow
ζα mesh parametrization of the surface
|| · ||0 L2-norm of ( · )
⊗ dyadic or outer product between two vectors
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