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The theory of irreversible thermodynamics for arbitrarily curved lipid membranes is presented here. The
coupling between elastic bending and irreversible processes such as intramembrane lipid flow, intramembrane
phase transitions, and protein binding and diffusion is studied. The forms of the entropy production for the
irreversible processes are obtained, and the corresponding thermodynamic forces and fluxes are identified.
Employing the linear irreversible thermodynamic framework, the governing equations of motion along with

appropriate boundary conditions are provided.
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I. INTRODUCTION

In this paper we develop an irreversible thermodynamic
framework for arbitrarily curved lipid membranes to determine
their dynamical equations of motion. Using this framework, we
find relevant constitutive relations and use them to understand
how bending and intra-membrane flows are coupled. We
then extend the model to include multiple transmembrane
species which diffuse within the membrane, and learn how
phase transitions are coupled to bending and flow. Finally, we
model the binding and unbinding of surface proteins and their
diffusion along the membrane surface.

Biological membranes comprised of lipids and proteins
make up the boundary of the cell, as well as the boundaries of
internal organelles such as the nucleus, endoplasmic reticulum,
and Golgi complex. Lipid membranes and their interactions
with proteins play an important role in many cellular processes,
including endocytosis [1-9], exocytosis [10,11], vesicle for-
mation [12], intracellular trafficking [13], membrane fusion
[11,14,15], and cell-cell signaling and detection [16—18].

Protein complexes that have a preferred membrane cur-
vature can interact with the membrane surface and induce
bending [19], important in processes where coat proteins
initiate endocytosis [4-7,9] and BAR proteins sense and
regulate membrane curvature [2,3,20,21]. In all of these
processes, lipid membranes undergo morphological changes in
which phospholipids flow to accommodate the shape changes
resulting from protein-induced curvature. These phenomena
include both the elastic process of bending and irreversible
processes such as lipid flow.

Another important phenomena in many biological mem-
brane processes is the diffusion of intra-membrane species
such as proteins and lipids to form heterogeneous domains.
For example, T cell receptors are known to form specific
patterns in the immunological synapse when detecting anti-
gens [17,18]. In artificial giant unilamellar vesicles, a phase
transition between liquid-ordered (L,) and liquid-disordered
(L4q) membrane phases has been well-characterized [22-24].
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Such phase transitions have also been observed on plasma
membrane vesicles [25]. Furthermore, morphological shape
changes in which either the L, or the L4 phase domains bulge
out to reduce the line tension between the two phases have
been observed [22,26]. These phenomena clearly indicate the
coupling between elastic membrane bending and irreversible
processes such as diffusion and flow, which must be understood
to explain the formation of tubes, buds, and invaginations
observed in various biological processes [26-29].

The final phenomena of interest is the binding and
unbinding of proteins to and from the membrane surface,
and the diffusion of proteins once they are bound. Protein
binding and unbinding reactions are irreversible processes
and are ubiquitous across membrane-mediated phenomena
[5-8,12,14,15,19]. As an example, epsin-1 proteins can bind to
specific membrane lipids during the early stages of endocytosis
and induce bending [7,27]. Moreover, antigen detection by T
cells can be sensitive to the kinetic rates of T cell receptor
binding and unbinding [30-32]. The kinetic binding of proteins
also plays a crucial role in viral membrane fusion [14], where
proteins and membranes are known to undergo kinetically
restricted conformational changes in the fusion of influenza
[33-35] and HIV [15]. The case of HIV is particularly
interesting, as fusion proteins primarily reside at the interface
between L, and L4 regimes and fusion is believed to be
favorable because it reduces the total energy due to line tension
between the two phases [15].

All of the above phenomena involve elastic bending being
fully coupled with the irreversible processes of lipid flow,
the diffusion of lipids and proteins, and the surface binding
of proteins. Comprehensive membrane models which include
these effects are needed to fully understand the complex
physical behavior of biological membranes. Our work entails
developing a nonequilibrium thermodynamic framework that
incorporates these processes.

Previous theoretical developments have modeled a range of
lipid bilayer phenomena. The simplest models apply the theory
of elastic shells [36] and model membranes with an elastic
bending energy given by Canham [37] and Helfrich [38].
Many studies focus on solving for the equations of motion for
simple membrane geometries such as the deviations from flat
planes [39—44] and cylindrical or spherical shells [42,45-47].
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Some of these works also model the coupling between elastic
effects and either inclusions [40,48,49], surrounding protein
structures [44], or fluid flow [42,43,50] on simple geometries.
More general geometric frameworks based on theories of
elastic shells were established to model lipid membranes of
arbitrary geometry. Such models used variational methods
to determine the constitutive form of the stress components
[51-56]. Models developed from variational methods have
been built upon to include protein-induced curvature [57],
viscosity [53], and edge effects [58], and are able to describe
various membrane processes.

While the formulation of models from variational methods
is theoretically sound, the techniques involved are not easily
extendable to model the aforementioned coupling between
fluid flow and protein-induced spontaneous curvature, phase
transitions, or the binding and unbinding of proteins on
arbitrary geometries. Recently, membrane models have been
developed by using fundamental balance laws and associated
constitutive equations [51,59—-64]. In addition to reproducing
the results of variational methods, they have had great success
in understanding the specific effects of protein-induced curva-
ture on membrane tension [65,66] and simulating nontrivial
membrane shapes [62]. However, comprehensive models
including all of the irreversible phenomena mentioned thus
far and their coupling to bending have not been developed for
arbitrary geometries.

In this work we develop the general theory of irreversible
thermodynamics for lipid membranes, inspired by the classical
developments of irreversible thermodynamics by Prigogine
[67] and de Groot and Mazur [68]. While these classical
works [67,68] are for systems modeled using Cartesian
coordinates, developing this procedure for two-dimensional
lipid membranes is difficult because lipid membranes bend
elastically out-of-plane and behave as a fluid in-plane. As a
consequence, a major complexity arises because the surface on
which we apply continuum and thermodynamic balance laws
is itself curved and deforming over time, thereby requiring
the setting of differential geometry. We address these issues
systematically.

The following aspects are new in this work:

(i) A general irreversible thermodynamic framework is
developed for arbitrarily curved, evolving lipid membrane
surfaces through the fundamental balance laws of mass, linear
momentum, angular momentum, energy, and entropy, as well
as the second law of thermodynamics.

(i1) The contributions to the total entropy production are
found and the viscous contribution agrees with earlier varia-
tional approaches [53] as well as a balance law formulation
using an interfacial flow-based result [60].

(iii)) The thermodynamic framework is extended to model
membranes with multiple species, the phase transitions be-
tween L, and L4 domains, and their coupling to fluid flow and
bending.

(iv) The model is expanded to incorporate the coupling
between protein binding, diffusion, and flow, and the ther-
modynamic driving force governing protein binding and
unbinding is determined.

Our paper is organized as follows: We develop our model
by using the fundamental balance laws of mass, momentum,
energy, and entropy to determine the equations of motion

PHYSICAL REVIEW E 96, 042409 (2017)

governing membrane behavior. We then apply irreversible
thermodynamics to determine appropriate constitutive rela-
tions, which describe how membrane energetics affect dynam-
ics. Section II reviews concepts from differential geometry
which are necessary to describe membranes of arbitrary shape
and presents general kinematic results. Section III models a
single-component lipid membrane with viscous in-plane flow,
elastic out-of-plane bending, inertia, and protein-induced or
lipid-induced spontaneous curvature. In Sec. IV we extend
the model to include multiple lipid components and determine
the equations of motion when phase transitions are possible.
In Sec. V, we model the binding and unbinding of proteins
to and from the membrane surface. Throughout all of these
sections, we find membrane phenomena are highly coupled
with one another. For each of Secs. III-V, we end by giving the
expressions for the stresses and moments, writing the equations
of motion, and providing possible boundary conditions to
solve associated initial-boundary value problems. We conclude
in Sec. VI by including avenues for future work, both
in advancing the theory and in developing computational
methods.

II. KINEMATICS

We begin by reviewing concepts from differential geometry,
as presented in Ref. [69], which are essential in describing the
shape of the membrane and its evolution over time. We model
the phospholipid bilayer as a single differentiable manifold
about the membrane midplane, implicitly making a no-slip
assumption between the two sheets of the bilayer. We will
follow a similar notation to that presented in Refs [60,62,70].

Consider a two dimensional membrane surface P embed-
ded in Euclidean 3-space R3. The membrane position x is a
function of the surface parametrization of the patch 6 and
time ¢, and is written as

x = x(0%0). ey

Greek indices in Eq. (1) and from now on span the set {1,2}. At
every location on the membrane surface, the parametrization
0% defines a natural in-plane basis a, given by

a, =x,. 2

The notation (- ), denotes the partial derivative with respect
to 6. At every point x on the patch P, the set {a;,a,} forms
a basis for the plane tangent to the surface at that point. The
unit vector n is normal to the membrane as well as the tangent
plane, and is given by

ap X ap

n=——-—- 3)

la; x as|’

The set {a;,a,,n} forms a basis of R?, and is depicted in Fig. 1.
At every point x, we define the dual basis to the tangent
plane, {a',a?}, such that

a® -ag =483, 4)

where 3 is the Kronecker delta given by 8l =8 =1and

83 = 8} = 0. The covariant basis vectors a, and contravariant
basis vectors a“ are related through the metric tensor a,g and
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FIG. 1. A schematic of a membrane patch P. At each point x
on the membrane patch P, we define the in-plane tangent vectors a;
and a, as well as the normal vector to the plane n. The set {a;,a,}
constitutes a basis for the tangent plane at any location, while the
set {a;,a,,n} forms a basis of R®. At every point x;, on the patch
boundary 0P, we define the in-plane unit tangent T and in-plane unit
normal v which also form a basis of the tangent plane.

contravariant metric tensor a*?, which are defined as
Qop = 0q - Ag (®)]
and
a? = a" - af = (aup)7". (6)

The metric tensor and contravariant metric tensor describe
distances between points on the membrane surface. The
covariant and contravariant basis vectors are related by

ay = aupa’ @)
and
a® = a"ay, (8)

where in Egs. (7) and (8) and from now on, indices repeated in
a subscript and superscript are summed over as per the Einstein
summation convention.

Any general vector & can be decomposed in the {a,, a,, n}
and {a', a?, n} bases as

h=h%a,+hn=h,a® + hn, 9

where A and h, are contravariant and covariant components,
respectively, and are related by

h* =a"’hg (10)
and
hy = ags h*. (11)

In general, the metric tensor a,g and contravariant metric
tensor a®? may be used to raise and lower the indices of vector
and tensor components. For a general nonsymmetric tensor
o, indices are raised and lowered according to

0% = o ag, (12)

PHYSICAL REVIEW E 96, 042409 (2017)

and
0% = o%af*. (13)

For a symmetric tensor s with one raised and one lowered
index, the order of the indices is not important and the tensor
may be written as s%g, sg%, or sg, as all forms are equivalent.

When characterizing a membrane patch, it is useful to define
anew basis at the membrane patch boundary dP. Consider the
tangent plane at a point x}, on the membrane boundary, with the
membrane normal vector n. We define in-plane orthonormal
basis vectors T and v, where T is tangent to the boundary
while v is orthogonal to 7. If the membrane boundary 9P is
parameterized by its arc length £, then the in-plane unit tangent
7 and in-plane unit normal v are defined as

do“
=ay,—— 14
T a T (14)
and
V=T Xn. (15)

The basis vectors v and T may be expressed in the covariant
and contravariant bases as

v =1%, = v,a”® (16)
and
T =1%, = 1,0%. 17

Similarly, the basis vectors a, may be expressed in terms of
the basis vectors v and t as

Ay = VoV + T, T. (18)

The orthonormal basis {v,7,n} at a position x, on the
membrane boundary 9P is depicted in Fig. 1.

The surface identity tensor i in the tangent plane and the
identity tensor 1 in R? are given by

i =a"Qa, (19)
and
1:=i+n®n, (20)

where ® denotes the dyadic or outer product between any two
vectors. The curvature tensor byg is given by

bag == N - X 4p, (2D

and describes the shape of the membrane due to its embedding
in R3. Given the contravariant metric and curvature tensors a®
and b,g, the mean curvature H and the Gaussian curvature K
can be calculated as

H := 1a* by (22)

and
K = 16 My, by, (23)
where the permutation tensor %/ is given by &' = —¢?! =

1/,/det(aqp) and e!l = 22 = 0. The Gaussian curvature may
also be written as K = det(bap)/ det(aqp). The cofactor of
curvature b*f is defined as

b* :=2Ha"f — b, (24)
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where b*f = a“’\a'g“bm is the contravariant form of the
curvature tensor.

In general, the partial derivative of the covariant or
contravariant components of a vector are not guaranteed
to be invariant quantities. The covariant derivative, denoted
(+).a» produces an invariant quantity when acting on vector
components [69]. To define the covariant derivative, we
introduce the Christoffel symbols of the second kind, denoted
I'},, and given by

a .1 a8
FA;/, = Ea (ag)L_M + Asp,n — (1)‘“’5). (25)
The covariant derivatives of the contravariant vector compo-
nents v* and covariant vector components v, are defined as
A A Aon
v vy T v (26)

a
and
m
Upio = Vpa0 — F,\av/u (27)

where v;*a and v,.,, both transform as tensors. To take the
covariant derivative of second or higher order tensors, a more
complicated formula is required and may be found in Ref. [69].
The covariant derivative of the metric tensor as well as the
cofactor of curvature is zero. The covariant derivative of a
scalar quantity is equal to its partial derivative. It is also useful
to note v., = v ,. The Gauss and Weingarten equations are

agy = b,gan (28)
and
n, =—-bha,, (29)

respectively, and provide the covariant derivatives of the basis
vectors a, and n.

To model the kinematics of a membrane patch P, we
track the patch over time. At a reference time #y, we define
a reference patch Py. The area of the reference patch A may
then be compared to the area of the current patch a at a later
time 7. For an infinitesimal patch da, the Jacobian determinant
J describes the areal dilation or contraction of the membrane
and is defined by

da

J = —.
dA
The Jacobian determinant may be used to convect integrals

over the current membrane patch P to integrals over the
reference patch Py, as for a scalar function f we can write

(30)

/fda: fJdA, (31)
P Po

and the same can be written for vector- or tensor-valued
functions. The details of the mapping between current and
reference membrane configurations, and different coordinate
parametrizations, are provided in Appendix A 1 and a detailed
description can also be found in Ref. [56].

To track how quantities change over time, we define the
material derivative d/dt according to

d o
E(')~=('),t+v('),a- (32)
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Here (-), denotes the partial derivative with respect to time
where 6¢ are fixed and v* are the in-plane components of the
velocity vector v, which may be written as

dx
v:i=— =X =vn+1%,. 33
7 +v%a, (33)
In Eq. (33), we have used the shorthand notation x to express
dx /dt, and this notation will be used throughout. The scalar v
is the normal component of the membrane velocity given by

vV=2X-n. 34)

Applying the material derivative (32) to the basis vectors a,, is
nontrivial, and requires convecting quantities to the reference
patch Py. The material derivatives of the in-plane covariant
basis vectors are calculated in Appendix A 2, as well as in
Ref. [60], to be

Ay =0V4 = waﬂaﬁ + wen = waﬁaﬂ + wyn, (35)

where the quantities wy, w?, we?, and Wep are defined for
notational simplicity and are given by

we” == vf, — v bk, (36)
We := V"bra + Vg, (37
Wep = Wolayg, (38)
and
w® = w,a. (39)

By applying the material derivative (32) to the unit normal n
(3) and using the relation n - n = 0, we obtain

n=—(Vb§ +v)a, = —wa, = —wya’. (40)

The acceleration v is the material derivative of the velocity and
is calculated as

b= (v + vwe)n + (V8 — vu® + v w)a,. (41)

The material derivatives of the metric tensor a.g and curvature
tensor byg are found to be

da,g = Vg + Va;gp — 2Ubaﬂ = Wep + Wy (42)

and

Baﬁ = (vka — vbé)bw + (v*bm + v,a);ﬂ = wﬁkbm + Wea,
43)

where wg*, wy, and wgg are given by Egs. (36)—(38). Finally,
the time derivative of the Jacobian determinant is found in
Ref. [60] as

J 1

= Eaaﬁaaﬂ =2 — 2vH. (44)

In three-dimensional Cartesian systems, J /J = divv. Com-
paring the Cartesian result with the right-hand side of Eq. (44),
we see that the two-dimensional analog for div v is vf, — 2vH.
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III. INTRAMEMBRANE FLOW AND BENDING

In this section, we develop a comprehensive model of
a single-component lipid membrane which behaves like a
viscous fluid in-plane and an elastic shell in response to
out-of-plane bending. We use the balance law framework for
single-component membranes previously proposed in several
works [51,59,60,65,70] and in later sections extend it to
model multicomponent membranes, phase transitions, and the
binding of proteins to the membrane surface.

We begin by determining local forms of the balances of
mass, linear momentum, and angular momentum. We then go
on to determine the form of the membrane stresses through a
systematic thermodynamic treatment. To this end, we develop
local forms of the first and second laws of thermodynamics
and a local entropy balance. By postulating the dependence of
membrane energetics on the appropriate fundamental thermo-
dynamic variables, we determine constitutive equations for the
in-plane and out-of-plane stresses. We then use these stresses
to provide the equations of motion as well as possible boundary
and initial conditions for the membrane, and conclude by
briefly discussing how membrane dynamics can be coupled
to the surrounding bulk fluid.

A. Balance laws

Our general procedure is to start with a global form of the
balance law for an arbitrary membrane patch P, convert each
term to an integral over the membrane surface, and invoke the
arbitrariness of P to determine the local form of the balance
law. To convert terms in the global balance laws to integrals
over the membrane patch, we will need tools to bring total
time derivatives inside the integral and convert integrals over
the patch boundary to integrals over the membrane surface.

For a scalar-, vector-, or tensor-valued function f defined
on the membrane patch P, the Reynolds transport theorem
describes how time derivatives commute with integrals over
the membrane surface. As described in Ref. [60], the Reynolds
transport theorem is given by

d o
E(/Pf(@ ,t)da)

= / f@O“) + (v2 —2vH) f(6%1)da.  (45)
P

Now consider a vector- or tensor-valued function f, which
may be expressed as f = f“a, + fn.The surface divergence
theorem describes how an integral of f -v = f“v, over the
membrane boundary 9P, where v is the boundary normal in
the tangent plane defined in Eq. (15), may be converted to a
surface integral over the membrane patch P. To this end, the
surface divergence theorem states

/f”vads=/ﬁgda, (46)
aP P

where ds is an infinitesimal line element on the membrane
boundary.

1. Mass balance

Consider a membrane patch P with a mass per unit area
denoted as p(6%¢). The total mass of the membrane patch is
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conserved, and the global form of the conservation of mass

can be written as
d
—(/ pda) =0. (47
dt \Jp

Applying the Reynolds transport theorem (45) to the global
mass balance (47) brings the time derivative inside the integral,
and we obtain

/ 6+ (v& —2vH)p da = 0. (48)
P

Since the membrane patch P is arbitrary, the local form of the
conservation of mass is given by

6+ (v2 —2vH)p = 0. (49)

As the total mass of the membrane patch is conserved, the
mass at any time ¢ is equal to the mass at time 7y, i.e.,

/ o da :/ 0o dA, (50)
P P

where pg = p(6%1) is the areal mass density of the reference
patch. Using Eq. (31) yields

f pJdA 2/ po dA. (1))
Po Po

As the reference patch Py is arbitrary, the Jacobian determinant
J is given by

7= (52)

o
in addition to the form provided in Eq. (30).

Substituting f = pu into the Reynolds transport theorem
(45), where u is an arbitrary quantity per unit mass, and using
Eq. (49), we obtain

d .
E(/P,Ou da) = /;),ou da. (53)

Equation (53) is a modified Reynolds transport theorem and is
useful in simplifying balance laws where quantities are defined
per unit mass.

2. Linear momentum balance

It is well known from Newtonian and continuum mechanics
that the rate of change of momentum of a body is equal to
the sum of the external forces acting on it. Lipid membranes
may be acted on by two types of forces: body forces on the
membrane patch P and tractions on the membrane boundary
d’P. On the membrane patch P, the body force per unit mass is
denoted by b(6%). At a point x;, on the membrane boundary
d’P with in-plane unit normal v, the boundary traction is the
force per unit length acting on the membrane boundary and
is denoted by T'(xy,?;v). The global form of the balance of
linear momentum for any membrane patch P is given by

d
—(/pvda):/pbda+/ Tds, (54)
dr \ Jp P aP

where the left-hand side is the time derivative of the total linear
momentum of the membrane patch and the right-hand side is
the sum of the external forces.
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For three-dimensional systems in Cartesian coordinates,
one may use Cauchy’s tetrahedron arguments to decompose
the boundary tractions and define the Cauchy stress tensor,
which specifies the total state of stress at any location
[71]. Naghdi [36] performed an analogous procedure on a
curvilinear triangle on an arbitrary surface to show boundary
tractions may be expressed as a linear combination of the stress
vectors T* according to

T(xyp,t;v) = T%(xp,1) Vy. (55)

The stress vectors T describe the tractions along curves of
constant 6“ and are independent of the in-plane boundary unit
normal v. Substituting the traction decomposition (55) into the
global linear momentum balance (54), applying the surface
divergence theorem (46) on the traction term, and applying
the Reynolds transport theorem (53) on the left-hand side, we
obtain

/ o da = / (,ob + T";) da. (56)
P P

Since P is arbitrary, Eq. (56) yields the local form of the linear
momentum balance as

pv = pb +T7,. (57)

To recast the traction decomposition (55) into a more
familiar form involving the Cauchy stress tensor, we express
the stress vectors T% in the {a,,n} basis without loss of
generality as

T* = N*ag + S°n, (58)

where N*f and S* are the components of the stress vector T%
in the {a,,n} basis [59,60]. Substituting the form of the stress
vectors T* (58) into the traction decomposition (55) allows us
to write

T =0Ty, (59)
where o is the Cauchy stress tensor given by
o0 =N"%a,®a5+ Sa, @n. (60)

Consequently, N*¥ and S can also be interpreted as the in-
plane and out-of-plane components of the stress tensor o. In
specifying N*# and S, we will have completely determined
the total state of stress at any location on the membrane. The
in-plane tension & is one-half the trace of the stress tensor
(60), and as found in Ref. [62] is given by
6=1o:i=1INZ. (61)
The equation for the in-plane tension & (61) reinforces the
notion that N*# describes in-plane stresses and S describes
out-of-plane stresses, as only N%® enters Eq. (61).

When solving for the strong forms of the dynamical
equations of motion, we will need to consider the linear
momentum balance (57) in component form. In what follows,
we decompose the equations of motion in the directions normal
and tangential to the surface. To this end, the body force pb
may be expressed as

pb = pn +b%a,, (62)

where p is the pressure normal to the membrane and b* are
the in-plane contravariant components of the body force per
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unit mass. To express T, in component form, we apply the
Gauss (28) and Weingarten (29) equations to the stress vector
decomposition (58) and obtain

T = (V3 SB)a + (N + S (63

Substituting the body force decomposition (62), divergence of
the stress vectors (63), and acceleration (41) into the local form
of the linear momentum balance (57), we find the tangential
and normal momentum equations are given, respectively, by

p(vs —vw® + viw, ) = pb® + N;’}\“ — S*b (64)
and
p(v: + v we) = p+ N*byp + S%. (65)

The normal component of the linear momentum balance (65)
is usually referred to as the shape equation [45,72].

Although we do not yet know the form of the stresses N/
and S*, from Egs. (64) and (65) we already see coupling
between in-plane and out-of-plane membrane behavior. The
in-plane stresses N/ and the out-of-plane shear S* appear
in the in-plane equations (64) and the shape equation (65).
In general, we expect in-plane flow to influence out-of-plane
bending and vice versa.

The three components of the linear momentum balance (64)
and (65) and the mass balance (49) allow us to solve for the
four fundamental unknowns: the density p and the velocity
components v and v*. To solve the equations of motion,
however, we must first determine the forms of N*f and S*.
We will now systematically determine the form of the in-plane
and shear stresses before returning to the equations of motion.

3. Angular momentum balance

In this section, we analyze the balance of angular mo-
mentum of the membrane. The rate of change of the total
angular momentum of the membrane is equal to the sum
of the external torques acting on the membrane patch. In
addition to the torques arising from body forces and boundary
tractions, the membrane is able to sustain director tractions
on its boundary. These director tractions give rise to additional
external moments on the membrane boundary which will twist
the edges of the membrane patch, as depicted in Fig. 2. We will
show such moments are necessary to sustain the shear stresses
S% introduced in the linear momentum balance. Moreover, in
the absence of director tractions the in-plane stresses are shown
to be symmetric.

In general, we specify a director field d on the membrane
patch P to account for the finite thickness of the lipid
membrane [36,51]. The director d(6%¢) is a unit vector
describing the orientation of the phospholipids—when the
director d does not coincide with the normal to the surface n,
the phospholipids are tilted relative to the normal. At a point
xy, on the patch boundary dP, the director traction M (xy,?)
describes the equal and opposite forces acting on the director
d(xy,t). As the director d is dimensionless, the moment per
length m at the patch boundary is given by the cross product
dxM.

To properly account for the director field, it is necessary
to include the director velocity d in an additional balance
law for the director momentum as described by Naghdi and
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n /\ n
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M Mjn (a)
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m — > n
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i
(b)

FIG. 2. A director traction M acting on the unit normal n at the
membrane boundary results in edge twisting (a) and bending (b).
The director traction, which has units of couple per length, acts in
the manner of a force on the dimensionless normal vector to produce
a moment per length m = n x M. The inset in (a) shows a physical
representation of the director tractions acting on the membrane.
In general, the couple per length m acting on the membrane is a
superposition of that shown in (a) and (b), and lies in the tangent
plane.

Green [36,73,74]. Including the director field would enable
us to examine smaller length scale phenomena, for example
transmembrane proteins causing phospholipids to tilt and
inducing local inhomogeneities in the directors. In this work,
however, we choose not to study such phenomena and treat
the membrane as a sheet of zero thickness. In doing so, the
director is forced to be equal to the normal at every point x
and is prescribed to be

d(6%1) = n(6%r). (66)

Note that Eq. (66) is equivalent to the Kirchhoff-Love
assumption [51]. With this simplification, the moment per unit
length of the patch boundary, m, is given by

m=nxM. 67)

Given Eq. (67), the global form of the angular momentum
balance can be written as

d
—<[,oxxvda)
dt P

:/pxxbda+/(xxT+an)ds, (68)
P P

where px x v denotes the angular momentum density at the
point x, and px x b and x x T denote the torque densities
due to body forces and tractions, respectively.

While the director traction M may in general have normal
and tangential components, the component in the normal
direction has no effect on the resulting couple m due to
Eq. (67). Thus we restrict M to be in the plane of the
membrane. Once again using elementary curvilinear triangle
arguments described by Naghdi [36], the director traction M
may be written as

M(xp,t;v) = M%(xp,1) vg. (69)

The couple-stress vectors M in Eq. (69) must be in the plane
of the membrane due to our imposed restriction, and may be
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written without loss of generality as
M* = -M“ayg. (70)

Substituting the couple-stress decomposition (70) into the
director traction decomposition (69) allows us to write

M=p'v, (71
where p is the couple-stress tensor given by
p=-M%a,®ag. (72)

Because we require director tractions to not lie in the normal
direction, the couple-stress tensor g in Eq. (72) does not have
any a, ® n component.

Returning to the global form of the angular momentum
balance (68), we substitute the director traction decomposition
(69) and stress vector decomposition (55) to obtain

d
—</,oxxvda>
dt\ Jp

:fpxxbda+/(xxT"‘—i—an"‘)vads. (73)
P aP

Using the Reynolds transport theorem (53) and the surface
divergence theorem (46), Eq. (73) simplifies to

/,oxxi)da
P

= / [px X b+ (x x T).q + (n x M*)y]da. (74)
P

Since the membrane patch P is arbitrary, the local form of the
angular momentum balance can be obtained as

pPX XV =px xb+a, xT* +x x T,

—blag x M* +n x M2, (75)
where we have distributed the covariant derivatives and used
the Gauss (28) and Weingarten (29) equations.

It is useful to know what constraints the local form of the
angular momentum balance (75) imposes in addition to what
was known from the linear momentum balance (57). Taking the
cross product of x with the local linear momentum balance (57)

and subtracting it from the local angular momentum balance
(75) gives

ag x T* —blag x M* +n x M2, = 0. (76)

Substituting the couple-stress decomposition (70) and traction
decomposition (55) into Eq. (76), we obtain

ag x [(N* = bEM")ag + (S* + M )n] =0.  (77)

Equation (77) indicates the following conditions must be true
in order for both the linear momentum balance and the angular
momentum balance to be locally satisfied:

o := (N — bl M"*) is symmetric (78)
and
§ = —Mly. (79)

In Eq. (78), the tensor 0®# describes the components of in-
plane tractions due to stretching and viscous flow only, i.e., 0*#
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does not include contributions from moments. This is to say the
combination of angular and linear momentum balances impose
restrictions between the in-plane stress components N,
out-of-plane shear stress components S%, and the components
of the couple stress tensor —M%?. As the boundary moment
per length m is related to the components of M, Eq. (79)
indicates the relationship between out-of-plane shear stresses
and boundary moments. If boundary moments had not been
included, there would consequently be no shear stresses at any
point on the membrane surface.

Finally, it will be useful to express the boundary moment
per length m in terms of the in-plane boundary tangent T and
boundary normal v as

m=m,v+m,T. (80)

Using the identity ag x n = t3v — vg7, which can be derived
from the decomposition of the in-plane unit normal v (16)
and in-plane unit tangent T (17), and substituting the director
traction decomposition (69) and couple-stress decomposition
(70) into the equation for the moment per length m (67), we
find the components of the boundary moment per length m to
be

m, = Maﬂvarﬁ (81)
and
my = —M*Puv,vg. (82)

At this stage, all previous works using either the balance
law formulation [60,65] or variational methods [53] propose
constitutive forms of the in-plane viscous stresses and in-plane
velocity gradients to model the irreversible processes of fluid
flow. These are then used to determine the equations of motion.
In our work, we will naturally find the constitutive form
of the in-plane viscous stresses by evaluating the entropy
production and proposing relationships between the thermo-
dynamic forces and fluxes in the linear irreversible regime.
This framework based on entropy production is naturally
extendable to multicomponent systems and systems with
chemical reactions. In what follows, we proceed to develop
such a framework.

4. Mechanical power balance

While a mechanical power balance does not impose any
new constraints on the membrane patch, it expresses the
relationship between the kinetic energy, internal forces, and
external forces, which is useful for the entropy production
derivations in subsequent sections. We begin by taking the dot
product of the local momentum balance (57) with the velocity
v and integrating over the membrane patch P to obtain

/pv-i)da:fv-T‘.’;da+/pv~bda. (83)
P P ’ P

The left-hand side of Eq. (83) is the material derivative
of the total kinetic energy, as an application of the Reynolds
transport theorem (53) shows

d 1
E(/Pzpv-vda>=/7),ov~i)da. (84)
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The first term on the right-hand side of Eq. (83) may be
expanded as

/Pv-Tf;da:/P((v-T“);w—
=/BP(v-T"‘)va ds—/Pv,a

=/v-Tds—/v,a~T“da, (85)
aP P

where the second equality is obtained by invoking the surface
divergence theorem (46) and the third equality from the
boundary traction decomposition (55). By expanding the
integrand of the last term in Eq. (85), we find

va-T“)da

- T da

v, T = (waﬂa’g + wyn) - (N**a, + S%n)

= Naﬂu)aﬂ + Sawa

= 0P wap + bEM" wep — Mlg'wa,  (86)
where the first equality is obtained with the relation for v ,
(35) and T (58), and the third equality by substituting the
results of the angular momentum balance, Eqs. (78) and (79).
Using the symmetry of o®? found in Eq. (78) and the relation
for a.g (42), the first term in the final equality of Eq. (86)
may be written as 0w, = 1o ﬁ(wu,ﬂ + wpo) = S0P agg.
Using the product rule on the last term in the final equality of

Eq. (86) gives Mﬁ“wa = (MPrw, ).p — MPoy,, .s- Using these
simplifications, Eq (86) may be rewritten as

T"‘— aalg—f—MW(wa,gb —i—waﬂ)—(Mﬂ“w )8

87)

The second term on the right-hand side of Eq. (87) is M ""‘b,w,

given the relation for b «p 10 Eq. (43). We rewrite the last term
in Eq. (87) as
(MP*wy).p = (Mﬁ"‘wxai);ﬂ

= (MP*a, - wya*) g = (MP ). (88)

With the above simplifications, we find Eq. (87) reduces to
T = 10Pagg + M*Phys — (- M®),,. (89)

Using Eq. (89), Eq. (85) can be written as

v-T%, da

:/v-Tds
aP

. [y i
:f (v-T+n-M) ds—/ (—Gaﬁaaﬁ-l-Maﬂbaﬁ) da,
oP P \2

(90)

5S—

1 .
—/ [-a“f‘aaf, + M*Phys — (it - M“)Aa]da
pL2 ’

where the second equality is obtained by using the surface
divergence theorem (46). Substituting Egs. (90) and (84) into
Eq. (83), we find the total mechanical power balance is given
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d / ! v-vd +/ oy + M“Phy, | d
— —pv-vda —-o%a, o a
a\ J, 2" L\ 20 dab p

=/(v-T+iz-M)ds+/,ov-bda. 1)
P P

by

The left-hand side of Eq. (91) contains the material derivative
of the kinetic energy (84) and a term describing the internal
changes involving the shape and stresses of the membrane,
which describe the membrane’s internal power. The terms
on the right-hand side of the mechanical power balance (91)
describe the power due to external forces and moments acting
on the membrane.

B. Thermodynamics

In this section, we develop the thermodynamic framework
necessary to understand the effects of bending and intramem-
brane viscous flow on the membrane patch. We develop local
forms of the first law of thermodynamics and entropy balance,
and we introduce the second law of thermodynamics. We
follow the procedure described by de Groot and Mazur [68]
to understand the internal entropy production, albeit with one
difference. While de Groot and Mazur [68] begin with the
local equilibrium assumption and the Gibbs equation, it is
technically difficult to write the Gibbs equation for a system
which depends on tensorial quantities. In this work, we follow
the approach demonstrated in Ref. [75] and begin by choosing
the appropriate form of the Helmholtz free energy. Following
this framework, one can derive an effective Gibbs equation
after the analysis is complete.

1. First law: Energy balance

According to the first law of thermodynamics, the total
energy of the membrane patch changes due to work being
done on the membrane or heat flowing into the membrane.
The mechanical power balance (91) describes the rate of
work being done on the membrane due to external tractions,
moments, and forces. Furthermore, heat may enter or exit
the membrane patch in one of two ways: by flowing from
the surrounding medium into the membrane along the normal
direction n, or by flowing in the plane of the membrane across
the membrane patch boundary. We denote the heat source per
unit mass as r(60%¢), which accounts for the heat flow from the
bulk, and the in-plane heat flux as J4 = Jq"‘ a,. By convention,
the heat flux J 4 is positive when heat flows out of the system
across the patch boundary. Defining e(6%¢) to be the total
energy per unit mass of the membrane, the global form of the
first law of thermodynamics can be written as

d
—(/peda):/prda— Jq~vds+/,ov~bda
dr\ Jp P P P

+/(v~T+iz-M)ds. (92)
P

The total energy per unit mass e consists of the internal
energy per unit mass # and the kinetic energy per unit mass

%v - v, and is given by

pe := pu + %pv .. 93)
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Using the Reynolds transport theorem (53) and substituting
the expression for the total energy per mass e(6%¢) (93) into
Eq. (92), we obtain

/(,oit+,ov-i))da
P

:/prda— Jq~vds+/,0v-bda

P aP P

+/(v-T+r't-M)ds. (94)
aP

Equation (94) shares several terms with the mechanical power
balance (91), and by subtracting the two equations, the balance
of internal energy can be obtained as

/puda:/prda— Jq-vds
P P aP
1 .
+ / (—a“ﬁaaﬁ - M“f’baﬁ> da
p\2

a 1 apf - aB .
= pr — Jq;a + 50 Gop + M hyg | da,
P
95)

where the second equality is obtained by using the surface
divergence theorem (46). Since the membrane patch P is
arbitrary, the local form of the internal energy balance is given
by

pit = pr — %, + 50 Paes + M* byg. (96)

The first two terms on the right-hand side of Eq. (96) describe
the heat flow into the system, and the last two terms describe
the energy change due to work being done on the system.

2. Entropy balance and second law

The total entropy of a membrane patch P may change in
three ways: Entropy may flow into or out of the patch across the
membrane boundary, entropy may be absorbed or emitted from
the membrane body as a supply, or entropy may be produced
internally within the membrane patch. The local quantities
corresponding to such changes are the in-plane entropy flux
Js = J&¥ay, the rate of external entropy supply per unit mass
ne(60%1), and the rate of internal entropy production per unit
mass 1;(0%¢), respectively. For the total entropy per unit mass
s(0%1), the global form of the entropy balance is given by

d
—(/psda)=—/ JS'VdS+/(pne+P’7i)da'
dr\ Jp P P

o7
Applying the Reynolds transport theorem (53) and the
surface divergence theorem (46) reduces Eq. (97) to

f ps da = / (—J:‘;a + pne + ,om) da. (98)
P P
Again, due to the arbitrariness of the membrane patch P, the
local form of the entropy balance is given by

ps = —=J<y + pne + pni. (99)

At this point, it is useful to consider the nature of the entropy
flux, external entropy supply, and internal entropy production.
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We define the in-plane entropy flux J and the external entropy
supply per unit mass 7. to describe the redistribution of
entropy that has already been created. These terms may be
positive or negative. We now introduce the second law of
thermodynamics by requiring the internal entropy production
to be non-negative at every point in the membrane. The second
law of thermodynamics is given by

ni = 0. (100)

The internal entropy production (100) is zero only for
reversible processes.

3. Choice of thermodynamic potential

The natural thermodynamic potential for the membrane
patch is the Helmholtz free energy [59]. The Helmholtz free
energy per unit mass, v, is given by

v =u~—Ts, (101)

where T'(6%¢) is the local temperature of the membrane patch.
Taking the material derivative of Eq. (101), solving for s, and
substituting into the local entropy balance (99), we obtain

. 1. .
ps = —JS, + pne + pni = T(pu—st—m/f)- (102)

Substituting the local form of the first law of thermodynamics
(96) into Eq. (102) yields the total rate of change of entropy,
given by

ps = —JS + pne + p1i

1 1 . . . .
= F<,or —Jgat Eaaﬁaaﬂ + M“ﬂbaﬂ —pTs — ptﬁ).

(103)

Equation (103) will allow us to determine which terms
contribute to the internal entropy production, understand
fundamental relationships between the stresses, moments,
and energetics of the membrane patch, and finally develop
constitutive relations between the stresses, moments, and
associated kinematic quantities.

C. Constitutive relations

In this section, we choose the fundamental thermodynamic
variables for our membrane patch. With this constitutive
assumption, we determine the contributions to the entropy
flux, external entropy supply, and internal entropy production.
We then apply linear irreversible thermodynamics to relate
generalized thermodynamic forces to their corresponding
fluxes. In doing so, we naturally determine the viscous
dissipation due to in-plane fluid flow as well as the dependence
of the stresses and moments on the Helmholtz free energy
density.

1. General thermodynamic variables

Lipid bilayers have in-plane dissipative flow and out-of-
plane elastic bending. The Helmholtz free energy per unit mass
¥, as a thermodynamic state function, captures the elastic
behavior of lipid membranes. The general thermodynamic
variables that the Helmholtz free energy density of a two-
dimensional elastic sheet depends on are the metric tensor a,g,
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curvature tensor byg, and temperature 7' [36,59]. The simplest
form of the Helmholtz free energy density ¢ that captures this
behavior is given by

w = w(aaﬂsbaﬂ’T)'
In this work, we assume the membrane does not thermally
expand or chemically swell, so the metric and curvature tensors
capture only elastic behavior.

Because the metric and curvature tensors are symmetric,
the material derivative of the Helmholtz free energy density y
is given by

; 1/0 a ) 1/0 0 . oy .

VALY (L L PR (LA S A
2 aaaﬂ aaﬂa 2 abaﬂ Bbﬂa oT

(105)

(104)

Substituting Eq. (105) into the local entropy balance (103), we
obtain

pS = —Ji, + pne + pni
1 ) . Y
= ?{””‘ o ‘”T(”a—r)
1 v \].
| P
*3 [U p(aaaﬁ + aaﬂa)}aaﬂ

Y ﬂ)} }
+[M z(abaﬂ+abﬁa bas {-  (106)

At this stage, we assume the system is locally at equilibrium,
and therefore define the entropy as

(57)
s=—| — ,
oT dap op

where the partial derivative is taken at constant a,g and byg.
Rewriting the heat flux and using Eq. (107) reduces Eq. (106)
to

(107)

ps = —J, + pne + pni
q

J¢ r J*T,
= — —q +p__ ’
), T 1
11 v oy \T1.
e + o
T{ 2|:0 p(aaaﬂ aaﬂa>i|a g

ooy Iy |
M — 4+ ) |byp . (108
+ [ 2 (abaﬁ + dbpe ) | F (108)
From dimensional arguments, only gradients on the right-hand

side may contribute to the in-plane entropy flux components
J&, which are given by

Jﬂt
J* = ?q
The external entropy supply per unit area pn, captures entropy
being absorbed or emitted across the membrane body. The only
term on the right-hand side which describes such a change is
the heat source r. Therefore, the external entropy per unit area
p1ne 1s given by

(109)

PNe = (110)
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In Egs. (109) and (110), we obtain the familiar result that heat
flow into or out of the system is associated with an entropy
change.

As we have determined the terms on the right-hand side
of Eq. (108) that contribute to the entropy flux and external
entropy, the remaining terms contribute to the internal entropy
production. To this end, the rate of internal entropy production
per unit area pn; is given by

JETa 11 EYV 1
. iy R (e ;
P T2 + T{2|:0 p(a(laﬁ + 8a5a>}aaﬂ

"3t ) )
+[M 2(8baﬁ+abﬁa baﬁ .

The terms on the right-hand side of Eq. (111) are a product of
a thermodynamic force, which may be imposed on the system,
and a thermodynamic flux. Denoting the thermodynamic force
as X; and the corresponding flux as J, Eq. (111) may be
generally written as

(111)

pri = J* Xi = 0. (112)
In Eq. (112), the indices k are used as a label, as X; and Jk
may be scalars, vectors, or tensors. As described by Prigogine
[67] and de Groot and Mazur [68], we assume in the linear
irreversible regime, i.e., near equilibrium, there is a linear
relationship between X; and J* given by

Ji=L*Xx,, (113)
where L’ are the phenomenological coefficients.

In the internal entropy production (111), there are three
thermodynamic forces: the in-plane temperature gradient T
and the material derivatives of the metric and curvature tensor,
aep and bgg, respectively. We invoke the Curie principle
[76], as done by Prigogine [67] and de Groot and Mazur
[68], and propose that the phenomenological coefficients
between quantities with different tensorial order must be zero.
Therefore, the heat flux Jé" is independent of the tensorial
forces aup and byg. Similarly, the stresses and moments are
independent of the temperature gradients. In the spirit of
Eq. (113), the phenomenological relation for the heat flux
is then given by

J¢ = —kPTy, (114)
where the tensor k*? is the thermal conductivity tensor. As
the fluid is thermally isotropic in-plane, k* = k a*#, where
the constant « is the scalar thermal conductivity. In this case,
Eq. (114) reduces to

J¥ = — T,

: (115)

where we use the shorthand 7% to denote 7T g a®?. We note that
in the case of lipid bilayers, there are usually no temperature
gradients and Eq. (115) does not play a major role in describing
the relevant irreversible processes.

To obtain the remaining phenomenological coefficients
associated with the other irreversible processes in Eq. (111),
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we define the thermodynamic fluxes

9 F]
n“ﬁza“ﬂ—p( v + 1”) (116)
Baaﬁ Baﬂa
and
] ]
o = yer (20 Y (117)
2\ 0byg  Obpy

for notational convenience. In the linear irreversible regime,
the phenomenological relations relating 7% and w® to dp
and b,g can be generally written as

% = R G, + SV, (118)

and
o =14, + U, (119)

where the fourth-order contravariant tensors R*PY®, SePri,
T and U*PY* are general fourth-order phenomenological
viscous coefficients. The tensors S*#7# and T*"* describe
interference between the two irreversible processes driven by
dqp and b(,ﬂ, and we assume them to be zero for the case of
lipid bilayers. The phenomenological relations (118) and (119)
then reduce to

= R g, (120)

and

w =UPrip,,. (121)

Given the form of the internal entropy production (111),
Egs. (120) and (121) indicate 7 captures the dissipation
due to in-plane flow and w*® captures the dissipation due to
out-of-plane bending. In general, U**"* need not be equal
to zero and bending can provide another way by which the
membrane dissipates energy. However, we assume out-of-
plane-bending is not a dissipative process and so U*f7* = (.
Consequently, o* = 0, which leads to the constitutive relation
for the couple-stress tensor M“# being given by

ad d
MD(/S — B w + 1/f .
2\ 0bys  bpa

Because of the in-plane viscous nature of the lipid bilayer,
7% is nonzero. Lipid membranes are isotropic in-plane,
indicating R*#7* is an isotropic tensor. A fourth order tensor in
general curvilinear coordinates is isotropic when it is invariant
to all unimodular transformations of the coordinate system,
represented by the tensor A", such that

RPYE = A%s AP A, AH, RO

(122)

(123)

For A", to represent a unimodular coordinate transforma-
tion, it must satisfy AV, A% = §; and AV A = 8(’}, where
(A’l)”(, = A,° [69]. In what follows, we choose forms of
A", satisfying these requirements to determine constraints on
the form of R¥7k,

First, consider a rotation of the coordinate axes by /2
radians about the direction of the normal vector nm. The
transformation tensor A", corresponding to this rotation is
given by

Ay=0, Alb,=—=1, A} =1, A*=0. (124)
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Applying Eq. (124) to the definition of an isotropic tensor
(123), we obtain

Rllll — R2222, R1112 — —R2221, R1121 — _R2212
R]2]l —R2]22, R2111 — —R1222, R1122 R2211
R1212 —R2121, R1221 R2112 (125)

reducing the initial 16 variables in R*7* to eight.

Next, consider a transformation where we exchange a; and
a,. The transformation tensor A", for this operation is given
by

Aly=—1, AYL=0, A’ =0, A =1. (126)
Applying Eq. (126) to the definition of an isotropic tensor
(123) leads to

RM2—0, RM —0o g2 =0, R =0, (127)
reducing the remaining eight variables in R**7* to four.

The final transformation we consider is a rotation of the
coordinate axes by m/4 radians about the direction of the
normal vector n. In this case, the transformation tensor A”, is

given by
=1/v/2, AL =-1/V2,

A =142, AL =1/V2. (128)
Applying Eq. (128) to Eq. (123) yields
RUN _ pl122 4 p1212 | pi1221 (129)

thereby reducing the four remaining degrees of freedom in
R*PYH 10 three.

Given the independent variables of RePYI we now deter-
mine its functional form. Due to the linear independence of
R'22 R122 and R'?*', we may specify each term arbitrarily.
Consider the case Where RY22 £ 0 and R'"?!? = R'?2?! = 0.
From Eqgs. (129) and (125), R!!!! = R?22 = R!122 — R2211,
In Cartesian coordinates, the form of R%Y" would be
expressed with Kronecker delta functions [77]. In curvilinear
coordinates, the contravariant form of 8 is 8Za"ﬁ = a*f and

so we may write R/ = %)» a*Pa’™ where X is a constant
and the factor of 1/2 is included for convenience. The next
case to consider is when R'?1? = R?!121 = Rl — R?222 oL ()
and R''??> = R'?*! = 0. In a similar fashion to the previous
case, with curvilinear coordinates we find R*Y* = ¢| a®¥ aP*,
where ¢ is another constant. Finally, if R'??! = R?!12 £ 0 and
R?1Z2 = R122 — 0, we obtain R*Y* = ¢, a®*aP? , where ¢, is
yet another constant. Due to the linear independence of R'!?2,
R'12_ and R'?*!, the general form of R*/7* is given by the
sum

R¥Pri — Z a® aP* +0 a®taPv 4 %)» a®Pare. (130)
Equation (130) can be considered as providing the general
form of a fourth-order isotropic tensor in curvilinear coordi-
nates.
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Substituting the form of R“7* in Eq. (130) into the
expression for 7% (120), we obtain
7% = ({1 a®’aP* + ¢, a®* aPv + %)\. a“ﬂay“)aw
= ¢1a*a"a,, + L a*"a" ayy + Sha®Paay,
= ¢1a*aP"a,, + L a" a ay, + Sha*Paay,
=+ g“z)a"”’cl’g“c'lW + %ka“ﬂay“aw, (131)

where in the third equality we use the symmetry of a,,,. Using

Eq. (44) and defining ¢ = ¢; + ¢, reduces Eq. (131) to
7 =¢a*aay, + La®f (Vi —20H). (132

With the form of 7% in Eq. (132) and M*? in Eq. (122),
the internal entropy production (111) simplifies to

- ‘lgT'“ ”aﬂaaﬂ
PN = T2 T
JiTa 1
=— qu + ZT{C a®aPta, ,a.p

+.a® (ol = 20H s} > 0. (133)
In the absence of temperature gradients, Eq. (133) simplifies
to

U w g 2
p; = ﬁ{f a7 P o + 22 (], — 20H) } 0
(134)

where use has been made of Eq. (44). For the inequality in
Eq. (134) to hold, we require ¢ > 0 and A > 0. Physically,
¢ describes the internal entropy production from velocity
gradients and represents the in-plane shear viscosity, while
A describes internal entropy production due to the fluid
compressing or expanding and represents the in-plane bulk
viscosity. The final form of the total internal entropy produc-
tion in the linear irreversible regime is given by

k(T*Tg)
T2
+2A (v‘; — 2vH)2] >0,

1 .
oni = + ﬁl( Clwaﬂﬂawaaﬂ

(135)

where k, ¢, and A are all non-negative.

In this section, we determined how the stresses and
moments of the membrane are related to the Helmholtz energy
density, and the results can be summarized as

9

o = p< ‘” 4 )+n“ﬁ, (136)

aaa,g aaﬁa
mes = L( 2V (137)

2\ 9byp  Obpa
N = o + blimH, (138)

and

§ =Ml (139)

with 7# given by Eq. (132).
At this stage, we derive the Gibbs equation for the single-
component membrane system. The Gibbs equation in general
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relates infinitesimal changes in thermodynamic state functions,
and consequently will not account for any dissipation in
the system. It is therefore useful to define (c®¥)° to be the
reversible, elastic component of the in-plane stress 0% (136)

given by
oy oY
afel —
(@™) p(—aaaﬂ + aaﬂa>'

(140)

To derive the Gibbs equation for our membrane system, we
start with Eq. (102) and substitute the material derivative of
¥ (105), the local equilibrium assumption (107), the moment
tensor M*? (137), and the elastic component of the in-plane
traction (¢*#)¢' (140) to obtain

pTi=pit — 30 aop — M byg. (141)

Equation (141) relates the rates of change of thermodynamic

state functions, and by multiplying both sides of the equation
by dt we find

pTds=pdu— 30" dass — M* dbys. (142)

Equation (142) is the Gibbs equation for a two-dimensional
membrane surface with out-of-plane elastic bending and in-
plane elastic compression and stretching.

2. Helmholtz free energy: Change of variables

We have so far developed general equations of how the
membrane stresses depend on a Helmholtz free energy density
¥, which in turn depends on the metric tensor aqg, the
curvature tensor bg, and the temperature 7' (104). The energy
density v, in being an absolute scalar field, must be invariant
to Galilean transformations. For a fluid film, under Galilean
invariance the Helmholtz free energy density may depend on
aqp and b,g only through the density p, the mean curvature
H, and the Gaussian curvature K, which are functions of
the invariants of the metric and curvature tensors [59]. This
relationship is written as

W(aaﬂ’baﬁaT) = 1/_/(105H5K7T)

Note Eq. (143) can also be shown using material symmetry
arguments as presented in Ref. [78].

When substituting ¥ into the stress and moment relations
(136)—(139), we encounter terms like

(143)

Yy _J ap v OH v oK (144)
8aa,3 R Baaﬁ H 8aa5 K 8aa,g
and
oY - p - 0H . 0K
= ,— , 145
dbag Vo dbag s bag Y Ibag (145)

where subscripts including a comma denote a partial deriva-
tive, for example, ¥ , = 9 /dp. The variations in p, H, and
K due to changes in a,g and bug can be easily calculated, and
are summarized in Table I. Substituting the partial derivatives
given in Table I into Eqgs. (144) and (145), we find the
stress and moment tensors (136)—(139) expressed in terms
of ¥(p,H,K,T) to be given by

o = —p(p V¥, +2HV g + 2K g)a*”

+ oY b + 7, (146)
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TABLE I. The partial derivatives of the areal mass density p,
mean curvature H, and Gaussian curvature K with respect to the
metric tensor aqs and curvature tensor b,g. Each table entry is the
partial derivative of the column header with respect to the row header.
For example, the third column of the first row indicates 9K /0aqp =
—Ka*.

] H K
Aop —ipaf  —1p  —Ka*
bugp 0 1a* bk

M*P =Lp¥pa® +p g b, (147)
N = — p(p¥r, + HY y + KV g)a®”
+ 3 o0 0% + 1P, (148)
and
§¢ = _%(PIZ.H);ﬁ a*’ — (plp,K);ﬁ b (149)

Equations (146)—(149) are identical to those found in Ref. [60],
obtained without using the formulation of an irreversible
thermodynamic framework. When substituting Eqgs. (146)—
(149) in the equations of motion, it is useful to write the viscous
stresses 7%f in a different form which contains the mean and
Gaussian curvatures. Substituting Eq. (42) into Eq. (132) and
using the definition of the cofactor of curvature (24), we obtain

n% =2¢ (d“ﬁ —2vHa* + vE“ﬂ) + Aa“ﬂ(v;’; — ZUH),
(150)

where d*? is the symmetric part of the in-plane velocity
gradients defined as

daﬂ — %(le;ﬂ + Uﬂ;“)' (151)

3. Helfrich energy density

For single-component lipid bilayers, the Helmholtz free
energy density contains an energetic cost for bending and
an energetic cost for areal compressions and dilations. The
energetic cost of bending, called the Helfrich energy [38] and
denoted wy, is given by

wh = ky(H — C)* + koK. (152)

The constants &, and k, are the mean and Gaussian bending
moduli, respectively. In Eq. (152), C is the spontaneous
curvature induced by proteins or lipids which the membrane
would like to conform to. The compression energy density w,
equally penalizes areal compression and dilation, and is given
by
1 2
we = jkc(l - J), (153)
where k. is the compression modulus. As k. tends to infinity,
the membrane becomes incompressible. The factor of 1/J
in w, is necessary as areal compressions and dilations are
calculated with respect to the reference patch Py at time 4. To
see this explicitly, consider the total compression energy W,
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in the reference frame given by
W, = / we da = / J we dA =/ k(1 — J)? dA. (154)
P Po Po

The total Helmholtz free energy per unit area is given by

oY = wn + we + pf (T), (155)

where f(T) is a function of the temperature such that the
entropy s can be calculated using Eq. (107).

Given the total Helmholtz energy per unit area pyr (155)
and the forms of the Helfrich (152) and compression (153)
energies, we calculate the partial derivatives

pY.u = 2ky(H — C), (156)
oYk = ke, (157)

and
P20, = —ko(H — C)? — kK — 2ke(J —1). (158)

In obtaining Eq. (158) it is important to realize J is a function
of p, as shown in Eq. (52). Substituting the partial derivates
(156)—(158) into the stress and moment tensors (146)—(149)
yields

0" = ky[(—3H* + 2HC + C*a*f + 2(H — C)b*’]

—kyKa®f + 2k(J — Da* + 7, (159)
M = ky(H — C)a*® + kg b, (160)
N*f = ky[(—H* + C*)a® + (H — C)b**]
+2ke(J — Da*f + 798, (161)
and
8¢ = —ky(H — C)*, (162)

with 7% given by Eq. (150). Equations (159)—(162) de-
scribe the stresses and moments of an elastic, compressible
membrane with Helfrich energy density and viscous in-plane
flow. The protein- or lipid-induced spontaneous curvature C
appears in both the in-plane stresses and the out-of-plane
shear. Therefore, proteins or lipids with preferred spontaneous
curvature are able to affect both in-plane flow and out-of-plane
bending, an important observation noted in other theoretical
and computational studies [60,62,65].

D. Equations of motion

In this section, we provide the equations of motion for a
membrane with elastic out-of-plane bending and intramem-
brane viscous flow. The four unknowns in the membrane
system are the areal mass density p and the three components
of the velocity v. The four equations to be solved for the
four unknowns are the local mass balance (49), two in-plane
momentum balances (64), and the shape equation (65). We
refer to the equations necessary to solve for all the unknowns
as the governing equations. Substituting the stress and moment
tensors (159)—(162) into Egs. (64) and (65), we find the
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governing equations describing the motion of the membrane
to be

p(v,, + ana)
= p + 7%bys — 2ky(H — C)(H* + HC — K)
—ky A(H — C) +4Hko(J — 1), (163)

p(vs —vw® + v w,”)
o

= pb* + 7/ — 2Up(H — C)C — 2k, J P (164
’ P

and

P+ pav® + (U(fx - 2vH)p =0. (165)

The operator A is the surface Laplacian, and is defined by
A(-) = (-);ﬂaa“ﬂ. In deriving the shape equation (163), we
have used the identity b*/b,s = 2K . We use the form of 7%
in Eq. (150) to calculate 7/}, and 7%’ by, which are found in
Egs. (164) and (163), respectively, and are given by

mht =20 (dh® — v, 0" —20H ,a"?)

+aa" (vl — 20H) (166)

N

and

7% by = 2 [ b dy — v(4H? = 2K) | + 20H (v1, — 20H).
(167)

As expected, there are multiple modes of coupling among
the equations of motion. The spontaneous curvature and its
gradients appear in both the in-plane momentum equations
and the shape equation. The viscosity provides a medium
for coupling, as the viscous stress tensor 7% appears in all
three momentum equations [one out-of-plane (163) and two
in-plane (164)]. Finally, the presence of curvature and velocity
components in the momentum equations couples them with
the mass balance.

E. Boundary and initial conditions

In this section, we provide suitable boundary conditions
necessary for solving the governing equations (163)—(165).
We begin by deriving the general form of the forces and
moments along the membrane edge and then evaluate them
for the Helmholtz energy density in Eqs. (155)—(153). We
conclude with a discussion of the possible boundary conditions
for the membrane system. A major portion of this discussion
is developed in Refs. [51,59,60], but is provided here for
completeness.

The total force f at any arbitrary boundary on the
membrane surface may be decomposed in the {v,t,n} basis as

f=fv+ fit + fun, (168)

where f, and f; are the in-plane components of the force and
fu is the out-of-plane shear force felt by the membrane in the
normal direction. The total force f at the membrane boundary
is given by

d
f == TUlva - _(ml)n)v

T, (169)
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where £ is the arc length parametrization of the boundary and
m,, is defined in Eq. (81) [51,59,60,70]. If the boundaries are
piecewise continuous, and the discontinuities are indexed by
i, the force f; on the i" discontinuity is given by

fi=—[m))in,

where [m,]; denotes the change in m, as the ith corner is
traversed in the forward direction, as defined by the arc length
parametrization £. To decompose the force f in Eq. (169) in
the {v,T,n} basis, we must calculate dn /d¢. By using the chain
rule, the definition of t (14), the Weingarten Eq. (29), and the
decomposition of a, in Eq. (18), we obtain

(170)

dn do*
% = n,;\ﬁ = i‘l,)b'lf)L = —bﬁf(luf)\
= —b"ur,T — b, (171)

With the result of Eq. (171), the decomposition of the stress
vectors (58), and Eq. (18) once again, we find

fo = NPvyvs +m, b" 7, vy, (172)
fe = NPy 15 +m, b 7, 7, (173)
and
dm,
£, =S°‘vu,—d—nz. (174)

The moment M which contributes to the elastic behavior
of the membrane at the boundary by bending the unit normal
in the direction of v is calculated as

M = —m, = M*Pv,vg. (175)

The three components of the force provided in Egs. (172)—
(174) and the boundary moment M (175) are the general
forms of the forces and moments on the membrane boundary.
We now determine these quantities for more specific physical
situations.

First, consider a Helmholtz energy density of the form
¥(p,H,K,T) for which the stresses and moments are given by
Egs. (146)—(149). The moment M is obtained by substituting
Eq. (147) into Eq. (175), which yields

M= %plﬁ‘H V¥ 4+ p U x D Ve Vg.

‘We next define the normal curvatures in the v and 7 directions,
iy and k;, as &, = b*Pv,vg and k, = b*P1,14, as well as
the twist & = b*? v, Tg [60]. Using these definitions along
with the identities H = (k, + «;)/2 and K = k,k; — &2, we
substitute the constitutive forms of the stresses (146)—(149)
into Egs. (172)—(174) to obtain

(176)

%p Uiy +7Pugvg, (177)
(178)

fv = _102 Ip,p —p KZ,K KyKt —
fo=—3pVuE—pUkEn. +n%Prvp,
and

1 - o d. -
fo= =500 = (V)b + (0P §). (179)

For the specific case of the Helmholtz energy density provided
in Egs. (155)-(153), we substitute the partial derivatives
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calculated in Eqgs. (156)—(158) into Eqs. (176)—(179) to find

M = ky(H — C) + ko k¢, (180)
fo=k[(H—C)Y —(H — CO)x,] — kg &7
+2ke(J — 1) + %Py, vp, (181)
fo = —&[ke(H — C) + ko ko | + 71005, (182)
and
dé
Jo=—ke(H - C),, + kgﬁ. (183)

Now that the boundary force f and the boundary moment
M have been evaluated for our assumed form of the Helmholtz
free energy density (155), we consider the boundary conditions
for the governing Eqs. (163)—(165). As the membrane behaves
as a fluid in-plane, we may specify either the tangential
velocities v* or the in-plane components of the force, f, (181)
and f; (182), at the patch boundary. The shape equation, on
the other hand, is an elastic bending equation, and therefore
two boundary conditions need to be specified at every point
along the boundary. The simplest way to do so is to specify
the membrane position and its gradient in the v direction, or to
specify the moment M and the shear force f, at the boundary.

We have now provided the governing equations with
possible boundary conditions for both the tangential and
shape equations, and close the problem by providing possible
initial conditions. To this end, we specify the initial position
x and the initial velocity v everywhere on the membrane
surface, and furthermore assume the density p is initially
constant, the Jacobian J = 1 everywhere, and the spontaneous
curvature C = 0 for problems initially without proteins. With
these example initial conditions, and the suggested boundary
conditions, the governing Egs. (163)—(165) are mathematically
well posed.

F. Coupling to bulk fluid

We conclude our theoretical developments for single-
component lipid membranes by discussing the coupling of
the membrane equations of motion with the surrounding
fluid. While the bulk fluid provides an additional dissipative
mechanism via the bulk viscosity and dominates dissipation
for long wavelength undulations [79-82], the bulk fluid can
contribute negligibly in systems with membrane deformations
on the order of five microns or less [39,52,53]. Consequently,
the surrounding fluid can sometimes be excluded when
studying small length scale phenomena.

In cases where bulk dissipation is non-negligible, the
membrane and surrounding fluid should be modeled together
and coupled through interface conditions. The equations of
motion for the surrounding bulk fluid are the Navier-Stokes
equations. We denote quantities in the bulk with a subscript
“b” and label the fluid above and below the membrane with
a superscript “+” and “—,” respectively. Thus, vf{ and v, are
the bulk fluid velocities on either side of the membrane, and
we make the no-slip assumption between the membrane and
fluid such that

v,‘f =v (184)
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and

v, =0 (185)

at the membrane-fluid interface. Additionally, the stresses in
the bulk fluid, denoted by the tensors ag and o, enter the
membrane equations of motion through the body force b. A
force balance on the membrane yields

pb = (o —0oy)n, (186)

where n is the membrane normal. By decomposing the body

force in the {a,,n} basis as in Eq. (62), we find the pressure
drop p across the membrane to be given by

p=n-(of —o,)n (187)

and the in-plane body force components b* to be given by
(of —ay)n. (188)

The pressure drop and in-plane body forces in Eqs. (187)
and (188) enter the equations of motion of the membrane,
Egs. (163) and (164), and the velocities in both the bulk
fluid and membrane are solved in a self-consistent manner
to satisfy Eqs. (184)—(188). A computational implementation
of the aforementioned conditions at a fluid-structure interface
is provided in Ref. [83] in the context of liquid menisci and
elastic membranes. For small deformations of the membrane,
one can use the Oseen tensor to couple the bulk fluid and the
membrane, as done in Refs. [80,81].

ob% = a*

IV. INTRAMEMBRANE PHASE TRANSITIONS

Biological membranes may consist of hundreds of different
protein and lipid constituents and exhibit complex behavior
in which species diffuse to form heterogeneous domains,
which then take part in important biological phenomena
[17,18]. In order to better understand such processes, many
experiments have been carried out on artificially created
giant unilamellar vesicles (GUVs), the composition of which
may be precisely controlled. Of particular interest is the
phase transition in which a membrane initially in a liquid-
disordered (L4) phase develops, under a suitable change of
external conditions, phase coexistence between L4 phases
and liquid-ordered (L,) phases. The nature of these phases
is governed by their concentrations—the L4 phase generally
consists of a low melting temperature phospholipid such
as dioleoylphosphatidylcholine (DOPC) while the L, phase
generally primarily consists of a high melting temperature
phospholipid such as dipalmitoylphosphatidylcholine (DPPC)
as well as cholesterol. A line tension exists at the L,—L4 phase
boundary, and imaging experiments have shown one of the two
phases may bulge out to reduce this line tension [22,26], thus
indicating a coupling between membrane bending, diffusion,
and flow (Fig. 3).

In this section, we extend the irreversible thermodynamic
framework of the single-component model to have multiple
phospholipid constituents and determine the new forms of
the balances of mass, linear momentum, angular momentum,
energy, and entropy. We then propose a general constitutive
form of the Helmholtz free energy density and determine
the constitutive relations for stresses and moments as well
as phenomenological relations for the diffusive fluxes. We
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temperature or
pressure change

X

FIG. 3. A schematic of a phase transition in lipid membranes. The
membrane on the left is initially in the liquid-disordered state (Lq,
depicted in light gray). Under a suitable change of external conditions,
such as a temperature or pressure change, the membrane undergoes
a phase transition and contains both liquid-ordered domains (L,,
shown in dark gray) and liquid-disordered domains. Such phase
transitions are reversible, and the membrane can be returned to its
initial disordered state.

conclude this general treatment by determining restrictions on
the Helmholtz free energy due to invariance postulates. Finally,
we study a two-component membrane model in order to better
understand the coupling between bending, diffusion, and flow
in membranes which exhibit L,—L4 phase coexistence, as
described above. For these cases, we provide the equations
of motion and suitable boundary conditions. While we focus
on multicomponent phospholipid membranes, all the analysis
in this section can be applied to the diffusion and segregation
of transmembrane proteins as well.

A. Kinematics

The membrane is modeled as having N types of phospho-
lipid constituents, which are able to diffuse in the plane of
the membrane. We index the phospholipid constituents by &,
where k € {1,2,...,N}. In treating multicomponent systems,
we follow the procedure outlined in Ref. [68].

The mass density of species k is denoted by pr(6%1), and
the total mass density p is given by

N
PO =) pu(6%1).

k=1

(189)

The barycentric velocity v, also called the center-of-mass
velocity, is defined by the relation

N
pvim Y pone
k=1

where v = v{a, + vin is velocity of species k. While differ-
ent species may have different in-plane velocity components
vy, the normal velocity components v; must be the same for
all species.

As we track an infinitesimal membrane patch over time, our
reference frame moves with the barycentric velocity v. There
exists an in-plane diffusive flux of species k across the patch
boundary due to the difference in the species and barycentric
velocities. The diffusive flux of species k, ji, is given by

(190)

Jr = pr(ve — v). (191)
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This flux lies in the plane of the membrane and can be written
in component form as

jk = j;(xaa = pk(l)]? — Ua)aa. (192)

Summing all the diffusive fluxes in Eq. (191), we obtain

N
ij=0,
k=1

using Eq. (190). We define the mass fraction ¢, of each species
k as

(193)

o = 2%, (194)
o)
such that
N
dYa=1 (195)

Asonly N — 1 of the mass fractions are linearly independent,
we can completely define the composition of the membrane
by specifying the mass density o and mass fraction ¢, for
k=2,34,...,N.

B. Balance laws

We follow the same general procedure as in the single-
component case to determine local forms of the mass, linear
momentum, and angular momentum balances. We employ
mixture theory, as presented in de Groot and Mazur [68],
to develop a wholistic model of membrane behavior without
modeling the individual forces between different phospholipid
species. We assume no chemical reactions and defer their study
to the last part of this work (Sec. V).

1. Mass balance

The mass of a single species k in a membrane patch P may
only change due to a diffusive mass flux at the boundary. In this
case, the global form of the conservation of mass of species k

is given by
il [o)=- [
— orda)=—| jr-vds.
df( P ap

Applying the Reynolds transport theorem (45) and the surface
divergence theorem (46) to Eq. (196), we obtain

fp [6x + (v, — 2vH) py|da = — /P Jio da.  (197)

In Eq. (197) and from now on, v* and v refer to the tangential
and normal components of the barycentric velocity v, respec-
tively, as decomposed in Eq. (33). Since the membrane patch
P in Eq. (197) is arbitrary, we obtain the local form of the
conservation of mass of species k as

o+ (v — 20H) pr = — .-

Summing Eq. (198) over all k£ and realizing the right-hand
side is zero due to Eq. (193), we recover the local form of the
total mass balance to be given by

o+ (v‘fx — ZUH),O =0.

(196)

(198)

(199)
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Using the local forms of the species mass balance (198) and
total mass balance (199) as well as the definition of ¢; (194),
we obtain the balance of the mass fraction of species k as

péx = —js. (200)

2. Linear momentum balance

For a membrane with multiple components, each species
k is acted on by a body force b;(6%¢). The entire membrane
patch is subjected to a traction T (xp,?; v) at the boundary, and
the total linear momentum of the membrane patch is the sum
of the linear momentum of each species as shown in Eq. (190).
In this case, the global form of the linear momentum balance
is given by

] ()] - [ (S e [

(201)
Defining the mass-weighted body force b as
N
pb =7 pibu. (202)
k=1

and using the barycentric velocity v in Eq. (190), the global
linear momentum balance (201) can be reduced to

d
—(/pvda):/pbda—i—/Tds.
dt\ Jp P aP

Equation (203) has the same form as the single-component
global linear momentum balance (54), where now the body
force and velocity are mass-averaged quantities. The boundary
traction T may once again be decomposed into a linear
combination of stress vectors as in Eq. (55), and by using
the same set of procedures as in the single-component section
we find the local form of the linear momentum balance is given
by

(203)

pv = pb+ T, (204)

As Eq. (204) is identical to the single-component result
(57), Eqgs. (58)—(60) continue to be valid descriptions of the
membrane stresses.

We have so far seen the local mass balance and local
linear momentum balance are identical for single-component
and multicomponent membranes. The director traction M
may also be decomposed in the same manner as in
the single-component case (69), and thus the results of
the single-component angular momentum balance—namely
the symmetry of o® (78) and the form of S* (79)—are
appropriate for multicomponent membranes as well. Further-
more, the mechanical power balance is unchanged from the
single-component case (91) since it only depends on the linear
momentum balance.

C. Thermodynamics

In this section, we follow the same procedure as in the
single-component section to develop the local form of the first
law of thermodynamics. The local form of the entropy balance
and the second law of thermodynamics are unchanged. We end
with the expression for the internal entropy production.
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1. First law: Energy balance

The global form of the first law of thermodynamics for the multicomponent membrane system is given by

d N
_</peda>:fprdg_/1q-vds+/ Zpkbk-vk da—i—/(vT—i—Mn)ds
di \ Jp P aP P aP

k=1

(205)

Equation (205) is identical to the one-component result (92), except for the force term which is now a sum over the individual
species. The difference in body force contribution between the global form of the first law of thermodynamics (205) and the
mechanical power balance (91) is

N N N N
/ <Z ,Okbk . vk> da — /(,Ob . I)) da = / (Z ,Okbk sV — Zpkbk . v) da = / <Z ,Okbk . (vk — l))) da
P \k=1 P P \k=1 k=1 P \k=1

o)

where we have used the definition of the mass averaged body force b (202) and the definition of the in-plane diffusive flux j;
(191). With Eq. (206), the mechanical power balance (91), and assuming the decomposition of total energy e into internal energy
u and kinetic energy given in Eq. (93), the global form of the first law of thermodynamics (205) simplifies to

N
1 .
/7;/)1,; da = /7; <pr - ]g;a + Z(bk)"‘ ]1? + Eo‘“ﬁdaﬁ + M‘Yﬂbaﬁ> da.

k=1

(206)

(207)

In writing the covariant component of the in-plane body force acting on species k, (by )y, in Eq. (207), we have explicitly included
parenthesis to avoid confusion with the curvature tensor. Comparing Eq. (207) with the single-component result (95) shows the
only difference is the by - j; term calculated in Eq. (206). Since the membrane patch P is arbitrary, the local form of the first

law of thermodynamics is given by

N

. Lo 1 af - af
pu = pr — Jc;x;a + Z(bk)o‘ Ji + o ﬁaaﬁ + M ﬁbozﬂ'

k=1

Comparing Eq. (208) to Eq. (96), one additional term has
appeared—namely the sum of (by), Jji -

2. Entropy balance and second law

We define the in-plane entropy flux J 5, the external entropy
supply pn., and the internal entropy production pn; as in
the single-component model. The global entropy balance
is unchanged from the single-component case (97), and
consequently the local form of the entropy balance is given
by Eq. (99). The second law of thermodynamics is unchanged
as well, and is given by Eq. (100). At this stage, we invoke
the Helmholtz free energy density v for the multicomponent
membrane system, which is of the form given in Eq. (101).
Following an identical procedure to the single-component case
described in Sec. III B 3, we find the local form of the entropy
balance can be expressed as

ps = —Jly + pne + pni

N

1 P

T (Pr —Jgo T E (bi)o Ji + Eaaﬁaaﬁ
e

+ M*Phyg — pTs — plﬁ). (209)

> (208)

D. Constitutive relations

In this section, we extend the framework developed in the
single-component section. When we apply linear irreversible
thermodynamics to relate thermodynamic forces to their
corresponding fluxes, we find diffusive species fluxes are
driven by gradients in chemical potential and non-uniform
body forces across different species. We learn that the form of
the stresses and moments are identical to the single-component
case.

1. General thermodynamic variables

With N types of phospholipids composing the lipid
membrane, there are an additional N — 1 degrees of free-
dom relative to the single-component case, which are the
N — 1 mass fractions {ci}x=2... .y := {c2,¢3,C4, ... ,cn}. For
this case, the Helmholtz free energy density per unit mass for
the membrane system is formally written as

Y = Y (aup,bay, T\ {Ct }i=2,...N)- (210)
We define the chemical potential of species k, wy, as
0
o= ke 234N Q11)
8ck

where the partial derivative holds a,g, byg, and ¢ constant,
with j in {2,3,4,...,N}. The chemical potential w; is not
defined in Eq. (211) as ¢y is not an independent variable due
to the relation (195). For the membrane system, the chemical
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potential describes the change in Helmholtz free energy when
species k is exchanged with species one, such that all other
mass fractions remain constant.

Taking the material derivative of Eq. (210) and multiplying
by p, we obtain

. ool W v\
==L aq by
pw 2 <8au,,3 + aaﬁa ﬂ + abaﬁ + abﬂa ’

+PT—+ZP k_

d .
YEIANTAVII KT TATS
2 Baaﬁ 8(1ﬁa Bba,g abﬂa

N

—psT =" i jae
k=2

212)

where in obtaining the second equality we have substituted
Eqgs. (200) and (211) and used the local equilibrium assumption

given by
(&)
s = .
or aop, bap, {Cklk=2,...N

213)

We substitute Eq. (212) into the entropy balance (209) to find

ps = —Ji, + pne + pni

N N
1 o o
?{pr—nga_FZ(bk)a]k +Zl’l’k.]k,a
k=1 k=2
1 Y oy .
+ o — + o
2 |:0 p(aaaﬂ 8at3a>i|a ’

+[Maﬂ (aifﬂJr%)]baﬂ}. (214)

We rewrite the gradient terms in Eq. (214) to obtain

— Il PN+ PN

o N ‘o o
_(Jq _Zk=2“‘k]k> +ﬂ Jg T

T —

ps =

T T2

N . N
Z(bk)oz Ji Z(Mk) -
+ -_ P

k=1 T k=2 T ,or]k

(1 v oo \].
LI ap
+ T{Z[ p(aaaﬁ + aaﬁaﬂa"‘ﬁ
oy
[ (abaﬁ " abﬂ)]b"’g }

From Eq. (215), we see only the first term contributes to the
in-plane entropy flux J&, given by

N
1 .
Js‘”=7(f§“— ) Mkjlf)
=

(215)

(216)

PHYSICAL REVIEW E 96, 042409 (2017)

Again, the heat source per unit mass is the only term which
contributes to the external entropy supply pne, given by
or

Ple = ?

The terms on the right-hand side of Eq. (215) which contribute
to neither the entropy flux nor the external entropy contribute
to the rate of internal entropy production per unit area pn;,
yielding

217)

JaT N (b) o N
q .o ka.]k 1223 .o
Rt S ()

k=1 k=2

1(1 ay oy \].
—_1_ | g% _
* T{2|:6 p(aaaﬂ - aaﬁa>i|aaﬂ

op_ PV %) ; }
+|:M 2(abaﬂ+ab,3a bap | > 0. (218)

Using Eq. (193), we simplify the second term on the right-hand
side of Eq. (218) as

N . N .
(bk)a ]]ft _ (bl)a ];1 (bk)oz J]?
Z T - T + Z T

k=1 k=2

B i ((bm -~ (bl)a) »
= —T Jic -

k=2

PN = —

(219)

Substituting Eq. (219) into the rate of internal entropy
production per unit area (218), we obtain

KT ZN (B)a — (b1)
q .« ko o M .o
= (# a (7))1"

k=2

1(1 oy \1.
L R
+ T{Z[G p(aaaﬂ + aaﬂaﬂa"‘ﬂ

wop_ PV 3‘”) ;
—i—[M 2<abaﬂ+abﬁa bap § =0, (220)

Each term on the right-hand side of Eq. (220) is the
product of a thermodynamic force and a corresponding flux,
as in Eq. (112). In the linear irreversible regime, one can
now assume linear phenomenological relations between the
thermodynamic forces and fluxes as in Eq. (113). We invoke
the Curie principle [68,76] and assume the fluxes J¢" and j* are
independent from the tensorial thermodynamic forces a,g and
bug, and the tensorial fluxes are independent from the vectorial
thermodynamic forces. Therefore, in the linear irreversible
regime the most general relations between the vectorial fluxes
and forces are given by

N
a_ _ af ap| b)p — b)p (1
I = —x rﬁ+k§:2 F, [—T 7)) @

and

N
=Gy + Y Deaﬂ[w _ (%)J (222)
=2 '

where the phenomenological coefficients Fkaﬁ and G*# de-
scribe interference between the heat flow and in-plane species
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diffusion. In the case of lipid bilayers, we assume these to be
zero. In the case where there is no cross-coupling between the
heat and diffusive fluxes, the in-plane fluxes simplify to

I =—k"Ty

N o T bos — (b
o= ZDzﬂ[( 0)p T( U (%)J
=2 ,

We assume, as before, the thermal conductivity tensor k is
isotropic and obtain

(223)

and

(224)

J¢ =~k T (225)

As noted in the single-component case, we assume lipid
bilayers do not sustain in-plane temperature gradients and
Eq. (225) is not of relevance in our modeling of irreversible
processes. Assuming further the diffusion tensors Dfﬁ only
affect j¥ when k=¢ and D, # is isotropic, we obtain
DI’ = Dya® when k=¢ and D’ =0 otherwise. With
these assumptions, the linear phenomenological relation for
the in-plane species flux j; simplifies to

- (br)* — (by)” “
=P ()]

Equation (226) indicates gradients in chemical potentials and
differences in the in-plane forces b, between individual species
drive the diffusive fluxes.

Finally, the tensorial terms in the rate of internal entropy
production pn; are identical to those of the single-component
case (111). Therefore, following similar arguments to the
single-component case, we find the form of the stresses
and moments in Egs. (136)—(139) remain unchanged for
multicomponent systems.

For lipid bilayers, it can again be argued that Galilean
invariance [59] or material symmetry arguments [78] lead to
a change in the fundamental variables of the Helmholtz free
energy density, as given by

V(aap.bap. T {ciYk=2,...n) = V(o H,K,T {cihkms,...n)- (227)

Given Eq. (227), we note there is again no change to the form
of the stresses and moments given by Egs. (146)—(150), in
terms of their depedendence on p, H, and K.

We have now determined the governing equations for a
general multicomponent membrane patch, for which the un-
knowns are the density p, the three components of the velocity
v, and the N — 1 mass fractions ¢, for k € {2,3,...,N}. The
corresponding equations are given by the total mass balance
(199), the three linear momentum balances, Egs. (64) and (65),
in which we know the equations for the stresses, and the N — 1
linearly independent mass fraction balances for ¢ (200), where
ke ({2,3,...,N}and j is given by Eq. (226).

As the form of the tractions 7' and director tractions M on
the patch boundary are unchanged, the boundary conditions
outlined for the single-component system in Sec. IIIE are
again appropriate for the mechanical equations of motion of
multicomponent systems. As the total mass balance (199) and
mass fraction balances (200) contain only first-order deriva-
tives in time, we need to provide their initial values to solve for

(226)
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the dynamics of the membrane patch. The required boundary
conditions on ¢ will depend on the form of the Helmholtz free
energy, as will be seen in the following example.

E. Application to L,~L, phase transitions

Now that we have found the governing equations for a
general multicomponent membrane, we return to the specific
case of L,—L4 phase coexistence observed in GUVs [22,26].
As mentioned earlier, a membrane initially in an L4 phase
can form interfaces between L, and L4 regions when, for
example, the temperature is quenched (Fig. 3). Experimentally,
such a phase transition has been observed in three-component
systems [22-24].

We consider a scenario in which the three components
of a membrane patch are DOPC, DPPC, and cholesterol as
in Ref. [22]. The L4 phase consists of DOPC, which is a
low melting temperature lipid, while the L, phase consists of
DPPC, which is a high melting temperature lipid, as well as
cholesterol. Because the mass fraction of DOPC is an order
parameter in that it can be used to specify which phase a region
is in, we define the dimensionless order parameter ¢ as

P = Cpopc- (228)

In doing so, we choose to model our three-component system
with only two components, in which one component is
DOPC while the other component is the lumped DPPC and
cholesterol.

1. Helmholtz free energy

With two membrane components, the Helmholtz free
energy density contains four terms. The first of these terms
captures the energetic cost of bending, through a modified form
of the single-component Helfrich energy density wy (152) in
which the bending rigidity ki, and spontaneous curvature C, if it
exists, depend on the local mass fraction ¢. Such modifications
reflect experimental observations that the bending modulus
of L, and L4 phases differ [26,84], and also that local
species concentrations may affect the spontaneous curvature
of the membrane [19]. The Helfrich energy density for our
two-component membrane system is

wh = ko(@) [H — C(@)1* + koK.

The Helmbholtz free energy density also contains a modified
form of the single-component cost of areal dilation and
compression, w, (153), in which the compression modulus
k. is again modified to depend on the local mass fraction ¢.
Different phases may be relatively more or less compressible,
and the multicomponent compression energy w. is written as

_ ke(®)
T

Next, for our Helmholtz free energy to give rise to
phase separation, we include a double-well potential wgy
by considering a mean-field model of molecular interactions
[85-87], given by

(229)

(1= J)%

(230)

C

k
Way = 7¢{x¢(1 — )+ ks T[PpIng + (1 — ¢)In(1 — )]}
(231)
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The double-well potential contains a competition between the
energetic term x ¢(1 — ¢) and the entropic term kg T [¢ In¢ +
(1 — ¢)In(1 — ¢)], where kg is Boltzmann’s constant and y,
which has units of energy, describes the mean-field interaction
energies of the two components. In Eq. (231), we assume
the temperature is low enough such that the energetic term
dominates and the potential has two minima—for our model,
this assumption is valid for x > 2 kg T'. The parameter k4 tunes
the relative energetic penalty of concentrations which are not
energetically favorable. The factor of 1/J is required for wqy
to have no density dependence when convected to the reference
patch Py, in the same way as the compression energy w..

The final term in our two-component Helmholtz free energy
accounts for the line tension at the interface between two
phases. We consider a simplified view in which ¢ = 1 in the
L4 phase and ¢ = 0 in the L, phase, such that the gradient of
¢ is a delta function which is nonzero at every point along the
phase boundary. This simple example motivates the gradient
term in the Helmholtz free energy, w,, written as

w, = %(q&_u o). (232)
In Eq. (232), we have chosen the simplest form of wg which
penalizes phase boundaries and is invariant to coordinate trans-
formations. The constant y describes the energetic penalty for
phase boundaries, and Eq. (232) is the curvilinear form of the
energetic contribution in standard Cartesian coordinates [85].

Combining all of the energy contributions, the total
Helmholtz free energy density v for our two-component
membrane system is

PY = wh + Wwe + Wy + Waw

ke(¢)
J

= ko(®)H — C($)]* + koK + (1—J)?

k
+ 20,07 + L {x(1 = 9)

+kg T [¢pIng + (1 — ¢)In(1 — ¢)]}.

To determine the stresses, we note that w, = %(f)y,ﬁb’“ =
%¢,M¢,Aak“ and thus ¥ may not be completely expressed
as a function of only p, H, K, T, and ¢—consequently, in
Eq. (233) we have written v/ instead of 1. We therefore use
the equations for the stresses in terms of the more general
variables aqg, bog, T, and ¢ (136)—(139). Using the partial
derivatives found in Table I, we find the membrane stresses
and couple stresses are given by

(233)

o — kb(¢)([—3H2 +2HC($) + (C($))*]a*
F2UH — COIET) - kgKa™ +2k(@)J — Da®?
+y(3pupa? — 9 P) + 7, (234)

M = kp(¢)H — C(@)|a“ + kb*, (235)

NP = k@) ([~ H? + (C@)]a" +[H — C@)15)

+2k(®)J — Da? + y (36,97 a*? — p*¢7)
+7Taﬂ, (236)
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and

5 = —(ko(@)H — C()])*“.

In Egs. (234)—(237), we can determine which components
of the total free energy py (233) contribute to the in-plane
and out-of-plane stresses through the coefficients ky(¢), kg,
kc(¢), v, and ky. For example, the couple-stresses M «f (235)
and shear stress S* (237) are only affected by the Helfrich
bending energy wy, (229), while the in-plane stresses N*#
(236) contain contributions from the bending energy wy, the
compression energy w. (230), and the gradient energy w,
(232). The gradient energy contributions are Korteweg-like,
and describe in-plane momentum transfer due to line tensions
and concentration gradients in the system [8§8-91].

The double-well potential wgqy (231) does not enter the
stresses, but affects the equations of motion through the
chemical potential j1y = 0v/0¢, calculated as

(237)

1
Ko = ;{%@)[H — C()) = 2kn(@)C' (@) H — C ()]

+ —kcgd))(l — P —yAp

k
+7‘"[X(1—2<z>)+kBT1n(1 qu)“

The chemical potential (4 thus contains contributions from
the bending energy, compression energy, and gradient energy.

(238)

2. Equations of motion

For our two-component model, there are five unknowns:
the total mass density p, the mass fraction ¢, and the
three components of the velocity v. The five corresponding
governing equations are the total mass balance, the mass
fraction balance of ¢, and the three components of the linear
momentum balance. The total mass balance (199) is given by

P+ pav® + (v —2vH)p =0, (239)

where we have expanded the material derivative to show
how the in-plane velocities enter the mass balance. The mass
fraction balance of ¢ is given by Eq. (200), where we substitute
the form of the diffusive flux found in Eq. (226) to obtain

a G2 =B (1e)\T]
p(¢,f+¢,av)+{D[ T (T) ”JO’

(240)

where the chemical potential g is given by Eq. (238).
The chemical potential contains information from all four
components of the total Helmholtz free energy density, and
is coupled to the concentration and curvatures. Substituting
the stresses and moments (234)—(237) into the tangential
equation (64) and the shape equation (65), we obtain

p(vs + v we)
= p +1%bes — 2k @) H — C@)I(H* + HC($) — K)
+AHk(PII =11+ ¢po b s(Ha™ —b7)

— A(ko(@)H — CI) (24D
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and
p(v% — w¥v + v w,®)
J
= pb* + 7/ — 2kc(¢);p‘“ + ¢ {ki(@IH — C(@)]

—2kn(¢) C'(P)[H — C(@)] + 2k (P)[J — 1] — y Ad}.
(242)

From the governing Eqs. (239)-(242), we can clearly see
the highly nonlinear coupling between species diffusion,
bending, and intramembrane viscous flow. We note a similar
model was proposed by Agrawal and Steigmann [61], in
which viscous stresses were neglected. As the presence of
multiple components introduces diffusive fluxes, evident
from Eq. (240), and therefore velocity gradients, our model
indicates viscous stresses cannot be omitted in describing
multicomponent membranes.

3. Boundary and initial conditions

In this section, we specify boundary conditions on the
governing equations (239)—(242), as appropriate, for them to
be mathematically well-posed.

The mass fraction balance for ¢ (240) has a fourth order
spatial derivative, as it contains the surface Laplacian of the
chemical potential, which itself contains the surface Laplacian
of the mass fraction ¢ (238). This is similar in structure to
the shape equation, and for a well-posed problem we must
specify two boundary conditions in ¢ at every point on the
boundary. For example, we may specify ¢ and its gradient in
the v direction, or the chemical potential 14 and the diffusive
flux in the v direction, jg vy, Where the diffusive flux j(‘;‘ is
given by Eq. (226). Such boundary conditions are studied for
systems described by Cartesian coordinates in Ref. [92].

The momentum equations are of the same general form
as in the single-component case. For the in-plane momentum
equation (242), we may specify either the velocities v* or the
in-plane force components f, and f; of the total force f at
the boundary, given in Egs. (168) and (169). For the shape
equation (241), we may specify the position and its gradient or
the shear force f,, and the moment M (175) at the boundary.
We find the functional form of the forces and moments by
substituting the stresses (234)—(237) into the general relations
(172)—(175) and obtain

fo =ko(@)[H — C@)](H — C(@) — ) + 2ke(p)[J — 1]

1
+vy <§¢,u¢‘u - ¢'a¢’ﬂvavﬂ> - kg %_2 + ﬂaﬁvavﬁv

(243)
fo=—v¢ ¢ vty — ke(@)§ [H — C(9)]
P (244)
fi= ~@[H - @), +hT. @)
and
M = ky(P)H — C(P)] + kg k7. (246)
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We close the problem by providing example initial condi-
tions. As in the single-component case, we specify the initial
membrane position x, velocity v, and assume initially the
density p is constant and the Jacobian J = 1 everywhere. One
may also specify an initial distribution of the mass fraction
¢ everywhere, which determines the spontaneous curvature
C(¢). With these initial conditions and the aforementioned
boundary conditions, our problem is well-posed.

V. PERIPHERAL PROTEINS: CHEMICAL REACTIONS

The binding and unbinding of peripheral proteins plays
a crucial role in many cellular processes involving lipid
membranes. In vitro experiments have shown dramatic shape
changes can occur as a result of protein binding and unbinding
events involving the membrane and the surrounding fluid
[13-15,19,93,94]. Once proteins bind to the membrane, they
are able to diffuse in-plane as well. The complex interplay
between protein binding, in-plane diffusion, in-plane lipid
flow, and membrane bending is currently not well understood.
In this section, we extend the multicomponent model to
include binding and unbinding chemical reactions of proteins
onto membranes. We determine the new form of the balance
laws and equations of motion, and learn the thermodynamic
driving force governing the binding and unbinding reactions.
We motivate our theoretical development with the following
example.

A. Chemistry

Consider the membrane to consist of two types of phos-
pholipids: DOPC and phosphatidylinositol-4,5-biphosphate
(PI(4,5)P,). In the fluid surrounding the membrane, there is
a reservoir of epsin-1 proteins which bind only to PI(4,5)P;
lipids [7,27]. The concentration of P1(4,5)P; is usually around
2% by mass under physiological conditions. Because we
model the membrane as a continuum, at every point in space
there may be multiple binding and unbinding events (Fig. 4).

plx, )= > pk(x,1)

ov(x, )= >, pkvi(x, 1)

i Yy

FIG. 4. A schematic depicting the binding and unbinding of
epsin-1 proteins to and from PI(4,5)P; lipids (black) in the membrane
patch P. The rate constants for binding and unbinding are denoted

by k and k, respectively. Epsin-1 proteins cannot bind to the
DOPC lipids (light gray). All interactions are modeled as part of
the continuum of the membrane, where changes in concentration are
accounted for in terms of changes to the local species density p(x,?).
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TABLE II. The chemical species in our example membrane
system undergoing protein binding and unbinding reactions, indexed
by k.

k Species

1 DOPC

2 PI(4,5)P,

3 P1(4,5)P,—epsin-1

In this entire theoretical development, electrostatic effects are
neglected. While we study this scenario in detail, another
motivating example is the binding of BAR proteins onto
membranes, which has been extensively studied in Ref. [20].
Our system includes the membrane patch P and any epsin-1
proteins bound to it. In the foregoing example, there exist three
chemical species in our system. They are labeled by the index
k, and are provided in Table II. The index k = 3 refers to an
epsin-1 protein bound to a PI(4,5)P; lipid. The binding and
unbinding reaction between epsin-1 and PI(4,5)P, lipids can
be written as
PI(4,5)P, + epsin-1 = PI(4,5)P,—epsin-1. (247)
The overall reaction rate R for Eq. (247) has units of a molar
flux and is given by
R=R-TR, (248)
where R and R are the forward and reverse reaction rates,
respectively. Defining ./, as the molar mass of epsin-1
proteins, .#,R is the mass flux from the reservoir of proteins
either above or below the membrane, herein called the bulk
phase, to the membrane surface.
The concentrations n; on the membrane patch, with units
of moles per area, are defined as

Pk
ny 1= A (249)
where py is the mass density of species k and . is the molar
mass of species k. The concentration of espin-1 proteins in the
bulk phase is denoted ng and has units of moles per volume.
The forward and reverse chemical reactions in Eq. (247) are
assumed to be elementary steps, for which the forward and

reverse reaction rates may be written as

— g

R=kn, ng (250)

and

R = kns, 251)

— «—

where k and k are the forward and reverse rate constants,
respectively. At this stage, we introduce the stoichiometric
coefficients o, which are the coefficients of the kth species in
the chemical reaction (247) and from inspection are given by
o) =0, ap = —1, and a3 = 1. It is notationally convenient to
define the stoichiometric coefficient of the epsin-1 protein in
the chemical reaction (247) as o, = —1.
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B. Balance laws

We continue to use our continuum mechanical framework,
including mixture theory, to describe the membrane patch. All
of the kinematic results derived in Sec. IV A continue to hold.
The binding and unbinding of proteins, however, affects the
overall mass balance of the membrane patch and consequently
the global forms of the linear and angular momentum balances
as well.

1. Mass balance

For a membrane patch P, the mass of species k can change
due to a diffusive mass flux j; at the patch boundary or
the binding and unbinding of proteins along the membrane
surface, which is a mass flux from the bulk phase to the
membrane surface. In this case, the global form of the
conservation of mass of species k is given by

d .
—(fpk da) =—f Jk-vds+/ak///dea. (252)
dr \ Jp aP P

The form of the diffusive flux of species k is given in Eq. (192)
such that the sum of diffusive fluxes satisfies Eq. (193).
Comparing Eq. (252) to its multicomponent analog (196), we
see the binding and unbinding of proteins affects the total mass
of each species through the reaction rate R. Again, we use the
Reynolds transport theorem (45) and the surface divergence
theorem (46) to obtain

/ [+ (o8, — 20H) ;] da = / (=j¢, + M R) da.
P P
(253)

As the membrane patch P is arbitrary, the local form of the
mass balance of species k can be obtained as

o+ (v, —20H)pp = —jiy + iR (254)

While we have accounted for bound proteins through the index
k = 3, which refers to epsin-1 proteins bound to PI(4,5)P,
lipids, it is possible to determine the continuity equation
for proteins alone by multiplying Eq. (254), for k = 3, by
My | M.

Summing Eq. (254) over all k, we find the local form of the
total mass balance is given by

o+ (v8 —20H)p = MR, (255)

indicating binding and unbinding reactions change the mass
of the membrane patch only due to the addition or removal of
proteins. When proteins are binding, R > 0 and the mass of the
membrane patch increases, while when proteins are unbinding
R < 0 and the mass of the patch decreases. Because the mass
of an infinitesimal patch changes over time due to protein
binding, the relation J = py/p from Eq. (52) is no longer true.
Consequently, aqp determines the Jacobian determinant J, but
does not determine the areal mass density p.

To calculate the appropriate form of the modified Reynolds
transport theorem for the case of binding and unbinding
proteins, we apply the Reynolds transport theorem (45) where
f = pu and substitute the local mass balance (255) to obtain

d .
E( /7: ou da> - fp (,ou +u///p7z) da.  (256)
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As before, in Eq. (256) u can be a scalar-, vector-, or tensor-
valued function.

2. Linear momentum balance

As our system now consists of the membrane patch
and any proteins bound to it, the binding and unbinding
of proteins will affect the total linear momentum of the
membrane patch. The mass flux of proteins from the bulk
to the membrane, .#,R, carries momentum to and from the
membrane surface. Assuming a no-slip condition between the
membrane surface and the adjacent fluid, the proteins travel
at an average velocity v just before binding and just after
unbinding. Correspondingly, the momentum flux from the bulk
to the membrane is v.#,R, and the global form of the linear
momentum balance is given by

i [or)

3
:/ (Zpkbk> da+/ Tds+/ v, R da. (257)
P P P

k=1

Using the Reynolds transport theorem (256) and the definition
of the mass-weighted body force provided in Eq. (202) with
N = 3, Eq. (257) can be reduced to

/pbda:/pbda+/Tds.
P P aP

Equation (258) is identical to the global form of the linear
momentum balance of a multicomponent system, found in
Sec. IV B 2 to be given by Eq. (54). Since the membrane patch
P is arbitrary, the local form of the linear momentum balance
may be written as

(258)

pb = pb + T, (259)

3. Angular momentum balance

Similar to the linear momentum analysis, the additional
change in the angular momentum due to the chemical reactions
is x x v.#,R. Therefore, the global form of the angular
momentum balance is given by

d
—(/pxxvda):fpxxbda+/
dr\ Jp P P

+/x X vy R da.
P

(xxT~|—m)ds

(260)

Applying the Reynolds transport theorem (256) to the left-hand
side, we obtain

/pxxbda:/pxxbda+/ (x x T 4+ m) ds, (261)
P P P

which is identical to the global form of the multicomponent
angular momentum balance found in Sec. IV B 2 to be given
by Eq. (68). The local form of the angular momentum balance
for our membrane system is therefore identical in form to the
single-component case (75). As the local linear momentum
balance (259) is also unchanged, the symmetry of o*# (78),
form of S* (79), and mechanical power balance (91) are valid
in the presence of chemical reactions as well.
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C. Thermodynamics

In this section, we develop local forms of the first and
second laws of thermodynamics as well as the local entropy
balance. Thermodynamic balance laws must now take into
account energy and entropy changes due to chemical reactions.

1. First law: Energy balance

In addition to the mechanisms described in the multicompo-
nent case, the total energy of the membrane patch can change
due to the flux of proteins from the bulk phase to the membrane
surface. Assuming the changes in energy due to the binding
and unbinding of proteins can be decomposed into kinetic and
internal energy components and there is no slip between the
membrane surface and the surrounding fluid, these changes
are given by (%v - v + u)./,R. Correspondingly, the global
form of the energy balance can be written as

d
i oo
3
:/Z(pkbk~vk)da+fprda+/ v-T ds
P P aP

— Jq-vds+ M -nds
P P

1
+/ (51) “v+ u>///pR da.
P

In Eq. (262), only the last integral term is new compared to the
multicomponent form (205). Applying the Reynolds transport
theorem (256) and substituting the definition of the total energy
(93), we obtain

3
1 da = by -v d+/ d
/PPM a L;(Pk k k) a ppi’ a

+/(v~T—Jq-v+M~i1)ds. (263)
P

262)

The right-hand side of Eq. (263) is equal to the right-hand
side of the multicomponent global energy balance (205).
Following similar arguments to those of the multicomponent
case described in Sec. IV C 1, the local form of the first law of
thermodynamics is found to be

3
pic =) i b+ pr— Iy
k=1

1 s, 8],
+ za"‘ Agp + M“ baﬁ- (264)
Equation (264) is identical to the local energy balance of the
multicomponent membrane (208), for N = 3.

2. Entropy balance and second law

As in the momentum balances and the energy balance, in
the global entropy balance we introduce a new term to account
for the entropy changes due to the chemical reaction. To this
end, the entropy is modified by s.#,R, and accordingly the
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global form of the entropy balance is given by

£ fme)

dt
Jo-vds+ / (pne + pni + s M,R) da. (265)
P

P

Applying the Reynolds transport theorem (256) and the surface
divergence theorem (46) to Eq. (265), we obtain

f ps da = f (—J&q + p1e + pmi) da.
P P

As the membrane patch P is arbitrary, the local form of the
entropy balance is

(266)

= —Ji + p1e + o0 (267)

The second law of thermodynamics is still given by Eq. (100).

3. Choice of thermodynamic potential

As in the previously considered single- and multicompo-
nent membranes, we express the entropy balance in terms of
the Helmholtz free energy density y. Using Eqgs. (101) and
(267) we obtain the total rate of change of entropy to be

(268)
|

1. . .
= —Jiy t PN+ pni = 7(pu —pTs — py).
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Substituting the local form of the first law of thermodynamics
(264) into Eq. (268), we obtain

+ one + P

3
1 »
7{pr — T Y I (B
k=1

ps =

o
_‘]s o

1 . . .
+ ia“ﬁaaﬂ + M*Phyg — pTs —p¥rg.  (269)

Equation (269) is identical to the multicomponent entropy
production, given by Eq. (209), for N = 3.

D. Constitutive relations

In this section, we extend the framework developed in
the multicomponent analysis to determine the internal en-
tropy production equation. We again apply linear irreversible
thermodynamics to relate thermodynamic forces and fluxes
and determine the stresses, moments, and diffusive species
fluxes. We also determine the thermodynamic driving force
governing the binding and unbinding of proteins in the linear
irreversible regime and then extend our analysis to apply to
systems arbitrarily far from chemical equilibrium.

1. General thermodynamic variables

As mentioned earlier, due to the binding and unbinding of proteins, the metric tensor a,p determines the Jacobian determinant
J but not the areal mass density p. Consequently, the Helmholtz free energy per unit mass ¥y may depend on all the species
densities o1, p2, and p3 in addition to a.p and may be written as

Y = Y (aup, bap, T, {pr}ti=1,2,3)-
Taking the material derivative of ¥ in Eq. (270) and multiplying by p, we obtain

(270)

. p{ 0y oy oy oy
== Ay Y ba a
o 2<aaaﬁ+aaﬂa) 5+ (abaﬂJrab ) ﬁ+p +§ ,0 pk
p( oY oy v ¥
_Pr ay bos — psT o« _oyH MR], @71
2<aaaﬁ+aaﬁa> ﬁ+2(3baﬁ+abﬂ) 5 — ps +§ [ = jf — (V% — 20H ) p + o MR],  (271)

k=1

where in obtaining the second equality, we used the local equilibrium assumption

d
o _<_‘”> , 272)
oT Aap, bap, P1, P2, P3
defined the chemical potential as
il
Mk—ﬂ<8w> , (273)
Ok aaps bap, P2k

J¢ T,
T2

3 .
Jo = Dimt i Ji
T

or

T

= =t e+ pni = —(

Yy

I e N
—J g% —
T2 P Baaﬁ

oy
Ba,go,

and substituted the expression for p; given by Eq. (254). The chemical potential p; (273) has units of energy per unit mass, and
is now defined for all three species, as p;, 03, and ps are linearly independent.
Substituting Eq. (271) into the entropy balance (269) and rearranging terms yields
3
_ K)o
T ( T > Jk
k=1 k=1 a
0 ayr 1<
Gop + | MY — = + bog ¢ — — o MR — (V¥ —2vH .
oot = 3G oo - 7 ol e =20
042409-25
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As outlined by Prigogine [67], we introduce the chemical affinity <7 for the chemical reaction in Eq. (247), which was first
introduced by de Donder [95] as

3
o = —Olplig///p - Zak,uk///k, (275)

k=1

where ug is the chemical potential of proteins in the bulk, again defined to have units of energy per unit mass. As
described by de Groot and Mazur [68], because the diffusive fluxes j; sum to zero (193), for any scalar quantity f; we can
write

3 3
=) (- i (276)
k=1 k=2

Equation (276) also holds for vector or tensor quantities. Substituting Eq. (275) into Eq. (274), reorganizing terms using Eq. (276),
recognizing (v, — 2vH) contains aup due to Eq. (44), and rearranging terms gives

R m)j,?‘] Lo ud MR IS T,

= —Jo T Pne+ pni = —[

T o T T T2
3 3
(br)e — (b1)a M — AR L)1 g Bw Ay op
+ 1;2 [ T ( 7 )J T 7130 Gy ) T ;,U«k Pi |dap
oo ov\],
M — = bap { - 277
+ 2<abaﬁ+abﬂa>] ’3} @

By inspection of Eq. (277), the in-plane entropy flux J is

3
1 »
J = 7|:J§ - E (e —u1)Jk]~ (278)
k=2

The external entropy supply now contains a new contribution from the bulk phase, namely apug AR/ T, in addition to
pr/T. The rate of change of mass of the membrane is given by .#,R and is equivalent to the diffusive flux of proteins from the
bulk in the direction normal to the membrane. Therefore, o Mg AR/ T is the entropy flux at the boundary of the bulk phase
[68]. Accordingly, the external entropy supply p#n. is given by

b
r wy AR
pre = o T2 279)

where we have substituted op = —1.
Next, the terms on the right-hand side of Eq. (277) which have not contributed to the entropy flux or the external entropy
contribute to the internal entropy production. To this end, the rate of internal entropy production per unit area pn; is given by

JETa T (b — (b)) — AR
o _Yq " ko Ve Mk — K1 .o
PN = T2 +;|: T ( T )ﬂ:|]k + T

L[] LAY o9 oy \],
=1z - wp+ | MP — =+ ——)|bssy = 0. (280
JFT{z[Cr (aaaﬁ 9ape) T Z“"p" Gap + 2\ oty ¥ b5 )7 (250)

k=1

(

Equation (280) is the sum of terms which are a product in Sec. IIT C 1 to find the relations between the vectorial and
of a thermodynamic force and a corresponding flux, where tensorial thermodynamic forces and fluxes as

the forces and fluxes are either scalars, vectors, or tensors.

We invoke the Curie principle [68,76] and assume the Jé’ =—k T, (281)
phenomenological coefficients connecting terms of different

tensorial order are zero. As the vectorial and tensorial terms N Y w
in Eq. (280) are similar to the multicomponent internal o= |:(bk) — (b)) _ (Mk —,U«l>’ ] (282)
entropy production (218), we follow the procedure described k T T ’
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3

il il -

o’ =p< . )—a“ﬂZukpkm“ﬂ, (283)
aaaﬂ aaﬂa =1

d d
mer = P(2V L OV (284)
2\ 0bop  Obpy
N = o + b p, (285)
and
§ = —Mly, (286)

with 7% given by Eq. (150). Equation (282) holds for
k € {2,3}, and j is calculated as j" = —j; — j3. It can be
seen from Eq. (283) that the in-plane stresses now contain
additional contributions from the adsorption of proteins onto
the membrane.

There is only a single scalar thermodynamic term in
Eq. (280), namely that involving the chemical affinity <7,
and the phenomenological relationship between the chemical
affinity and the reaction rate is obtained as

AL
T

R , (287)

where L is a positive constant. Equation (287) is analagous
to the result for chemical reactions in three-dimensional
Cartesian systems, as determined by Prigogine [67]. While
linear irreversible thermodynamics may provide us with
phenomenological relations with a wide range of validity, for
chemical reactions nonlinear effects become significant soon
after departure from equilibrium. Established theory allows us
to operate outside the linear irreversible regime [67,87]. To
this end, the chemical potential of an individual species k is
defined as

Mk = My (T) + RT Inag. (288)
Here pp(T) is a chemical potential under a set of standard
conditions, which is a function of only the temperature, and R
is the ideal gas constant. The activity of component k, denoted
as ay, is simply the concentration n; for ideal systems. The
equilibrium constant K.,(7') for the reaction is given by

3
RT In Keo(T) = —tp tyui(T) = Y _ apolliuy(T),  (289)
k=2

and is related to the forward and backward reaction rate
— <«
constants, k and k, through the equation

Keo(T) = —. (290)

=t =

We now have several relations which relate the reaction rates
to rate constants (248)—(251), chemical affinity (275), and
thermodynamic quantities between the membrane and bulk
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(288)—(290). Combining these equations, we obtain

(oo )

In developing Eq. (291), none of the arguments required
the system be close to equilibrium. The result is therefore
generally valid and describes how the reaction rate is related
to a thermodynamic force. In the limit

(291)

i <1 (292)
RT ’

we Taylor expand the reaction rate (291) about equilibrium to

find
- o
RZR@ ey i}
RT

where R, is the forward reaction rate at equilibrium (R, =
Re). Comparing Eq. (293) with Eq. (287), we find the

phenomenological constant L is given by L = R./R in cases
where Eq. (292) is valid.

(293)

2. Helmholtz free energy: Change of variables

As in the single- and multicomponent cases, the require-
ment for the Helmholtz free energy density ¢ to be an
absolute scalar field places restrictions on its functional form.
Under Galilean invariance the Helmholtz free energy density
may depend on aup and bug only through J, H, and K,
where 0J/0aq.s = %Ja“ﬁ and 0J/dbyp = 0. In this case, the
Helmholtz free energy density may be written as

V(aop, bog, T, {pr}k=1,23) =V (J, H, K, T, {pr}k=1,2,3)-
(294)

Substituting Eq. (294) into the stresses found in Egs. (283)-

(286) and using an analogous procedure to the derivation of
Egs. (146)—(149), we obtain

3
o = p(J ¥, —2HY u — 2KV x)a™ —a® )" i pi
k=1

+p U b + 7o, (295)
M = %p Vona® +py kb, (296)
N = p(J; — HY .y — K g)a”
—a* i 1 P+ 5 p . BP P, (297)
k=1
and
8% = =3(p¥.n)pa’ — (0V.k)p b (298)
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3. Helfrich energy density

For the membrane system under consideration, we assume the bound proteins do not exhibit a phase transition. Consequently,
the Helmholtz free energy contains neither the gradient contribution (232) nor the double-well contribution (231) present in the
multicomponent model. We further assume the spontaneous curvature in the membrane, C, is only due to the presence of bound
proteins, and may be written as C = C(p3). Finally, we assume there is an energetic penalty for protein-bound and unbound
PI(4,5)P, on the membrane patch. Given the above assumptions about membrane energetics in the case of protein binding
reactions, the total Helmholtz free energy consists of three terms. The first is the now familiar Helfrich bending energy wy, given
by

wh = ko[ H — C(p3))* + koK, (299)

where we assume the bending modulus k3, is independent of concentration. The cost of areal dilation and compression, w,, is
again written as

ke )
we = 7(1 = J), (300)
where we also assume the compression modulus k. is independent of concentration. Finally, we model the energetic penalty of
the minority species PI(4,5)P, and PI(4,5)P,—epsin-1 as
ws = ka(p2)” + k3(03)°, (301)

where k; and k3 are constants. Equation (301) may be considered as a simple model for understanding the energetic penalty of
minority species, while a general derivation from microscopic considerations is left to future work. The total energy density is
given by

_ ke
PV = wh + we + ws + pf(T) = kylH — C(03)]* + koK + — (- I+ ka(p2)* + ka(p3)* + pf(T), (302)

where as in the single-component case (155) f(T) is a function of the temperature such that the local equilibrium assumption
(272) holds.
Given the Helmholtz free energy density in Eq. (302), the chemical potentials w; defined in Eq. (273) can be obtained as

1 2 kc 2 2 2
oy = —;{kb[H = CP + koK + (1= J) + ka(2)” + ks (ps) } (303)
1 ke
we=—— {kb[H — C(o)* + kK + (1= J) + ka(p2)” + k3<p3>2} + 2k p2, (304)
and
1 kc !
3 = _;{kb[H — C(p))* + kK + 7(1 - J)2 + ka(p2)* + ks(,03)2} — 2ko[H — C(03)IC"(p3) + 2 k3 p3. (305)

Substituting the Helmholtz free energy density (302) and chemical potentials (303)—(305) into Egs. (295)-(298), we find the
stresses and moments of the membrane to be

o = kb({ — 3H? + 2HC(p3) + [C(p3)]* + 2 p3 [H — C<p3)]c/(p3>}a“f‘ +2(H — C(,Os)]l;aﬂ>

—keKa® +2ke(J = 1)a’ — [ka(p2)® + k3(p3)*]a* + 77, (306)

M = ky[H — C(p3)1a*? + kg b, (307)

N = ko({ = HZ + [Co)P +2 3 [H = C(p)IC (p3) }a®® + [H = Clp)1 ")
+2ke(J = Da"? — [ka(p2)* + ks(p3)*]a®” + 7, (308)

and
§% = —ky[H — C(p3)]"*. (309)

E. Equations of motion

In this section, we provide the equations of motion for a membrane undergoing protein binding and unbinding reactions. For
the specific membrane patch under consideration, there are seven unknowns: the total mass density p, the species densities p,
and ps, the reaction rate R, and the three components of the velocity v. We choose the total mass density p, rather than the
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DOPC mass density pj, as a fundamental variable because we are interested in the overall membrane behavior rather than that
of the chemically unreactive DOPC. The reaction rate R may be expressed as

- 4
R = kl’lzl’lB(l —exp{—ﬁ}),

where we have substituted Eq. (250) for R into Eq. (291). In Eq. (310), we assume the concentration of bulk proteins n

known, and n; is given by Eq. (249) for k = 2.

(310)

b

pIS

The conservation of total mass is given by Eq. (255), where we expand the material derivative to obtain

p.r+ pav® + (vh —20H)p = MR

(311)

The mass balance of species two and three are given by Eq. (254), where we can substitute the diffusive flux obtained in Eq. (282).
Since u, — 1 = 2k, po from Egs. (303) and (304), the mass balance for species two is given by

b (I b o ed
P26 + p2.aV* + (V2 — 20H ) p2 + {Dz[% — 2k2<&) ]} = —MR.

T (312)

Calculating the chemical potential difference @3 — @ from Egs. (303) and (305), we obtain the mass balance for species

3 as

P30+ p3.a0" + (v, — 20H ) p3 + [D3< T

b)Y — (b))% 2k
Mq_ {Tb[H—C(,Oz.)]C/(,OS)_

2 k3 p3
T

}’ )i| =R, (313)

Substituting the stresses and moments (306)—(309) into the tangential Egs. (64) and the shape Eq. (65), we obtain

p(v — wv + v w, ") = pb® + Tl + 2ky p3(C'(p3)[H — C(p3)]) ™ + 2ke J* = 2(ka p2 03" + k3 p3 p3”)

and

(314)

(v + v wy) = p+1%bog — ky ATH — C(p3)] — 2H [ka(p2) + k3(p3)*] + 4k H(J — 1)

— 2klH — C(p3)I[H? + HC(p3) — K — 2p3C"(p3)].

Equations (310)—(315) solve for the seven unknowns of the
membrane patch. We note that in developing these equations,
we have assumed a phase transition does not exist—and we
enforced this assumption by our choice of 1 in Eq. (302). If we
were to consider a different system in which proteins exhibit
phase separation, we would use the Helmholtz energy density
provided in the multicomponent case (233) with ¢ given by
¢ = p3/p. As we have already calculated the stresses and
moments for such an energy density, we could easily determine
the equations of motion and the consequences of a system with
such a phase separation.

F. Boundary and initial conditions

We conclude the problem of protein binding and unbinding
reactions by providing possible boundary conditions. As the
momentum equations, (314) and (315), are of the same
structure as in the multicomponent example, (241) and
(242), the momentum balance boundary conditions from the
multicomponent analysis of Sec. IV E 3 are appropriate for
a membrane patch with chemical reactions. The tangential
equations require either the in-plane velocities v* or the
in-plane components of the force, f, and f;, to be specified
at the boundary. The shape equation becomes mathematically
well posed if we specify the position and its gradient in the

(315)

(

v direction, or the moment M and the shear force f,, at the
boundary. We determine the force and moment at the boundary
by substituting the stresses (306)—(309) into Eqgs. (172)-(175)
to obtain

fo =kolH — C(p3)I[H — C(p3) — Ky +2 p3 C'(p3)]
+ 2ke(J — 1) = [ka(p2)” + k3(p3)*]

— kg &2 4+ %Py, (316)
fo=—ko&[H — C(p3)] — kg & ke + 7415, (317)
d
fo = —kolH — C(p3)].0 + kgﬁ, (318)
and
M = ko[H — C(p3)] + kg k- (319)

The species balances for PI(4,5)P, and PI(4,5)P,—
epsin-1 are given by Eqs. (312) and (313), respectively. Both
species balances contain the Laplacian of the corresponding
mass density. We therefore specify either p; or the species flux
at the boundary in the v direction, j;' vy, where k € {2,3}.

Finally, we note the equation for the reaction rate R (310)
does not contain any spatial derivatives, and we only need
to know the initial concentrations to determine the value of
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R at any later time. Given these initial concentrations, the
initial membrane configuration and velocity, and boundary
conditions, our problem is mathematically well posed.

VI. CONCLUSIONS

In this paper, we developed an irreversible thermodynamic
framework for arbitrarily curved lipid membranes. We began
by modeling a compressible single-component lipid mem-
brane, including out-of-plane elastic bending and in-plane
viscous fluid flow. Using the balances of mass, linear and
angular momentum, energy, and entropy, we determined the
entropy production for single-component membranes in terms
of the viscous stresses and in-plane velocity gradients through
the framework of linear irreversible thermodynamics. This
framework provided a natural way to develop constitutive laws
including the viscous stresses, and the resulting equations of
motion are identical to the results of earlier studies which
proposed constitutive forms of the viscous stresses [53,60]. We
then extended the model to include multiple components that
could diffuse in the plane of the membrane. We modeled phase
transitions between L, and L4 domains, and learned how phase
transitions are coupled to fluid flow, diffusion, and bending.
Finally, we extended our multicomponent model further to
include the binding and unbinding of peripheral proteins
in a biologically relevant example. We found how bending,
flow, diffusion, and binding are coupled, and determined the
thermodynamic driving force governing protein binding.

The current theory could be expanded in several ways to
develop a more complete description of lipid membranes. First,
we could model lipid membranes as two monolayer leaflets
rather than a single sheet as in Refs. [39,46,52]. By accounting
for individual monolayer leaflet behavior, we would under-
stand how intermonolayer friction and asymmetries between
the monolayers affect the equations of motion. Furthermore,
we could model the bulk viscosity of the fluid surrounding
the membrane and understand how an additional dissipative
mode affects membrane dynamics as in Refs. [42,96]. Finally,
we could model phase transitions involving proteins in
which proteins, once bound, can separate into high-density
and low-density phases. While this is a simple theoretical
extension from our current L,—Ly4 phase transition model,
phase transitions due to proteins are important in many
biological phenomena. Computational microscopic studies
have recently demonstrated the importance of protein-lipid
and protein-protein interactions in understanding membrane
bending [97-100], and have also shown a force of assembly
between proteins which favor the disordered phase, but which
have been placed in the ordered phase [101]. To this end, it
may be of interest to understand how protein interactions in
the presence of L, and L4 phases can affect bending, flow, and
the collective reorganization of the membrane.

In addition to further theoretical advances, the theoretical
framework presented in this paper can be used to develop
numerical methods such as finite element methods to simulate
membrane behavior in different biological processes such as
endocytosis, intra-cellular trafficking, and cell-cell signaling.
An initial effort along these lines is presented in Ref. [62].

Finally, we note the theoretical framework presented here
may be generally applied to systems beyond lipid membranes.

PHYSICAL REVIEW E 96, 042409 (2017)

For example, we could apply this procedure to understand
the dynamics of the cell wall, which plays a central role
in providing structure as well as interacting with the cell
membrane. As the cell wall has elastic in-plane behavior
in addition to elastic out-of-plane bending, the constitutive
assumptions will differ from those of lipid membranes but can
be easily included into the framework developed here.

ACKNOWLEDGMENTS

We thank Eva Schmid, David Limmer, and Clay Radke for
useful discussions and Joel Tchoufag for carefully reading
the manuscript. K.K.M. acknowledges the support of the
University of California, Berkeley, and National Institutes of
Health Grant No. ROI-GM110066. R.A.S. acknowledges the
support of the German Research Foundation (DFG) through
Grant No. GSC 111. A.S. is supported by the Computational
Science Graduate Fellowship from the US Department of
Energy.

APPENDIX: SURFACE PARAMETERIZATIONS

1. Convected coordinates

To better understand the connection between kinematic
quantities on the current and reference membrane configu-
rations, as done in Refs. [56,60], we begin by introducing
the convected coordinates £* which parametrize the reference
configuration—defined to be the membrane patch at some
fixed time #y. The convected coordinates £* are defined as

Ea = 9a|t:zo‘ (Al)

At later times the membrane patch will in general occupy
a different configuration, yet any such configuration can be
mapped back to the reference patch. It is therefore appropriate
to talk about how a point with constant £* moves in time, as
these coordinates are convected along with material points—
hence our choice of the name “convected coordinates.” Since
a point with constant convected coordinates £* always refers
to the same material point, £€* can also be called a Lagrangian
or referential parametrization.

To understand how a point with constant fixed surface
coordinates #* moves in time, we consider the relationship
between the two parametrizations 6* and £*. The fixed surface
coordinates 6% change over time as the membrane deforms,
and can be formally written as

0% = 0% (£”1). (A2)
The above equation allows us to relate velocities in terms of
the two parametrizations. To begin, the membrane position x
is expressed in terms of the surface coordinates as x(6%¢) and
in terms of the convected coordinates as X(£%¢), with

x(6%1) = x(0°“(&",0),1) = #(P), (A3)

where the “hat” denotes a quantity expressed in terms of the
convected coordinates £%. The velocity v is formally defined
as the rate of change of position of a material point, written as

0%

=Z|. A4
T (A9
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By expressing £(£%,1) in terms of the fixed surface coordinates
as x(0%¢) and applying the chain rule, we obtain

96«
ga  Of

_ax

V= —
at

a,. (AS)
gﬂ

We define the in-plane contravariant velocity components v*

as the rate of change of the fixed surface coordinates for a
given &7, given by

P 20“

ot

; (A6)
£s

and moreover require the fixed surface coordinates 6% to be
chosen such that
ox

—| =un, AT
o7 vn (AT)

213

so points of constant 6 move only in the direction normal to
the membrane. The velocity can accordingly be decomposed
as

v = vn + v%a,, (A8)

as done in Eq. (33), on substitution of Egs. (A6) and (A7) into
Eq. (AS).

To further explain the relationship between the fixed surface
and convected parametrizations, we consider a scalar function
f which can be written as f(6%¢) or f(&”¢). The material
derivative of f is formally defined as

df _of

= A
dt at |’ (A9)
gﬂ

PHYSICAL REVIEW E 96, 042409 (2017)

which on substitution of f(6%¢) and application of the chain
rule leads to

df  of
dr — ot

af 96

= aV%,
ge | 009 31 e+t

£P

(A10)

in agreement with Eq. (32).

2. Material time derivative of in-plane basis vectors

In what follows, we derive explicitly the expression for the
material time derivative of a, using the convected coordinates
&*. We first express a, using the formal definition of the
material derivative in terms of the convected coordinates,
which yields
(A11)

aq

A EEIG))
T or| 06

&b .
By expressing x(6%¢) as X(§*,¢) and applying the chain rule,
we obtain

) [af(s*,t) as“]
ar| aEr ¢

o =

gﬂ
- DR g 2 0 (067
oot ogr [l 00¢ 9gr 01\ 00% )|

(A12)

On the right-hand side, the temporal and spatial partial
derivatives in the first term commute while the time derivative
in the second term is zero. Accordingly, using Eq. (A4) we
find

a =

9 [ax@EXD] 9&" v 9&n
85_“[ ot }W_as_ﬂ 96

which is the statement of Eq. (35).

[1] T. Kishimoto et al., Determinants of endocytic membrane
geometry, stability, and scission, Proc. Natl. Acad. Sci. USA
108, E979 (2011).

[2] Z. Shi and T. Baumgart, Membrane tension and peripheral
protein density mediate membrane shape transitions, Nat.
Commun. 6, 5974 (2015).

[31Y. Rao and V. Haucke, Membrane shaping by the
Bin/amphiphysin/Rvs (BAR) domain protein superfamily,
Cell. Mol. Life Sci. 68, 3983 (2011).

[4] L. Karotki et al., Eisosome proteins assemble into a membrane
scaffold, J. Cell Biol. 195, 889 (2011).

[5]1J. Liu, Y. Sun, D. G. Drubin, and G. F. Oster, The
mechanochemistry of endocytosis, PLoS. Biol. 7, 1000204
(2009).

[6] T.C. Walther et al., Eisosomes mark static sites of endocytosis,
Nature 439, 998 (2006).

[7]1 E. M. Schmid and H. T. McMahon, Integrating molecular
and network biology to decode endocytosis, Nature 448, 883
(2007).

[8] W. Kukulski, M. Schorb, M. Kaksonen, and J. A. G.
Briggs, Plasma membrane reshaping during endocytosis is

revealed by time-resolved electron tomography, Cell 150, 508
(2012).

[9] H. T. McMahon and E. Boucrot, Molecular mechanism
and physiological functions of clathrin-mediated endocytosis,
Nat. Rev. Mol. Cell Biol. 12, 517 (2011).

[10] Z. Zhang and M. B. Jackson, Membrane bending energy and
fusion pore kinetics in Ca?*-triggered exocytosis, Biophys. J.
98, 2524 (2010).

[11] L. V. Chernomordik and J. Zimmerberg, Bending mem-
branes to the task: Structural intermediates in bilayer fusion,
Curr. Opin. Struct. Biol. 5, 541 (1995).

[12] J. Gruenberg, and H. Stenmark, The biogenesis of multivesic-
ular endosomes, Nat. Rev. Mol. Cell Biol. 5, 317 (2004).

[13] C. Barlowe et al., COPIl: A membrane coat formed by Sec
proteins that drive vesicle budding from the endoplasmic
reticulum, Cell 77, 895 (1994).

[14] S. C. Harrison, Viral membrane fusion, Nat. Struct. Mol. Biol.
15, 690 (2008).

[15] S.-T. Yang, V. Kiessling, and L. K. Tamm, Line tension at
lipid phase boundaries as driving force for HIV fusion peptide-
mediated fusion, Nat. Commun. 7, 11401 (2016).

042409-31


https://doi.org/10.1073/pnas.1113413108
https://doi.org/10.1073/pnas.1113413108
https://doi.org/10.1073/pnas.1113413108
https://doi.org/10.1073/pnas.1113413108
https://doi.org/10.1038/ncomms6974
https://doi.org/10.1038/ncomms6974
https://doi.org/10.1038/ncomms6974
https://doi.org/10.1038/ncomms6974
https://doi.org/10.1007/s00018-011-0768-5
https://doi.org/10.1007/s00018-011-0768-5
https://doi.org/10.1007/s00018-011-0768-5
https://doi.org/10.1007/s00018-011-0768-5
https://doi.org/10.1083/jcb.201104040
https://doi.org/10.1083/jcb.201104040
https://doi.org/10.1083/jcb.201104040
https://doi.org/10.1083/jcb.201104040
https://doi.org/10.1371/journal.pbio.1000204
https://doi.org/10.1371/journal.pbio.1000204
https://doi.org/10.1371/journal.pbio.1000204
https://doi.org/10.1371/journal.pbio.1000204
https://doi.org/10.1038/nature04472
https://doi.org/10.1038/nature04472
https://doi.org/10.1038/nature04472
https://doi.org/10.1038/nature04472
https://doi.org/10.1038/nature06031
https://doi.org/10.1038/nature06031
https://doi.org/10.1038/nature06031
https://doi.org/10.1038/nature06031
https://doi.org/10.1016/j.cell.2012.05.046
https://doi.org/10.1016/j.cell.2012.05.046
https://doi.org/10.1016/j.cell.2012.05.046
https://doi.org/10.1016/j.cell.2012.05.046
https://doi.org/10.1038/nrm3151
https://doi.org/10.1038/nrm3151
https://doi.org/10.1038/nrm3151
https://doi.org/10.1038/nrm3151
https://doi.org/10.1016/j.bpj.2010.02.043
https://doi.org/10.1016/j.bpj.2010.02.043
https://doi.org/10.1016/j.bpj.2010.02.043
https://doi.org/10.1016/j.bpj.2010.02.043
https://doi.org/10.1016/0959-440X(95)80041-7
https://doi.org/10.1016/0959-440X(95)80041-7
https://doi.org/10.1016/0959-440X(95)80041-7
https://doi.org/10.1016/0959-440X(95)80041-7
https://doi.org/10.1038/nrm1360
https://doi.org/10.1038/nrm1360
https://doi.org/10.1038/nrm1360
https://doi.org/10.1038/nrm1360
https://doi.org/10.1016/0092-8674(94)90138-4
https://doi.org/10.1016/0092-8674(94)90138-4
https://doi.org/10.1016/0092-8674(94)90138-4
https://doi.org/10.1016/0092-8674(94)90138-4
https://doi.org/10.1038/nsmb.1456
https://doi.org/10.1038/nsmb.1456
https://doi.org/10.1038/nsmb.1456
https://doi.org/10.1038/nsmb.1456
https://doi.org/10.1038/ncomms11401
https://doi.org/10.1038/ncomms11401
https://doi.org/10.1038/ncomms11401
https://doi.org/10.1038/ncomms11401

SAHU, SAUER, AND MANDADAPU

[16] X. Su et al., Phase separation of signaling molecules promotes
T cell receptor signal transduction, Science 352, 595 (2016).

[17] A. Carlson and L. Mahadevan, Elastohydrodynamics and
kinetics of protein patterning in the immunological synapse,
PLoS Comput. Biol. 11, 1 (2015).

[18] S. Y. Qi, J. T. Groves, and A. K. Chakraborty, Synaptic pattern
formation during cellular recognition, Proc. Natl. Acad. Sci.
USA 98, 6548 (2001).

[19] K. Bacia et al., Multibudded tubules formed by COPII on
artificial liposomes, Sci. Rep. 1, 17 (2011).

[20] Z. Chen, Z. Shi, and T. Baumgart, Regulation of membrane-
shape transitions induced by I-BAR domains, Biophys. J. 109,
298 (2015).

[21] B. J. Peter et al., BAR domains as sensors of membrane
curvature: The amphiphysin BAR structure, Science 303, 495
(2004).

[22] S. L. Veatch and S. L. Keller, Separation of liquid phases
in giant vesicles of ternary mixtures of phospholipids and
cholesterol, Biophys. J. 85, 3074 (2003).

[23] S.L. Veatch and S. L. Keller, Organization in Lipid Membranes
Containing Cholesterol, Phys. Rev. Lett. 89, 268101 (2002).

[24] S. L. Veatch and S. L. Keller, Seeing spots: Complex phase
behavior in simple membranes, BBA-Mol. Cell Res. 1746,
172 (2005).

[25] S. L. Veatch et al., Critical fluctuations in plasma membrane
vesicles, ACS Chem. Biol. 3, 287 (2008).

[26] T. Baumgart, S. T. Hess, and W. W. Webb, Imaging coexisting
fluid domains in biomembrane models coupling curvature and
line tension, Nature 425, 821 (2003).

[27] J. C. Stachowiak ef al., Membrane bending by protein—protein
crowding, Nat. Cell Biol. 14, 944 (2012).

[28] H. Zhao et al., Membrane-sculpting BAR domains generate
stable lipid microdomains, Cell Rep. 4, 1213 (2013).

[29] J. Hu et al., Membrane proteins of the endoplasmic reticulum
induce high-curvature tubules, Science 319, 1247 (2008).

[30] M. M. Davis et al., Ligand recognition by «f T cell receptors,
Annu. Rev. Immunol. 16, 523 (1998).

[31] K. Matsui, J. J. Boniface, P. Steffner, P. A. Reay, and M.
M. Davis, Kinetics of T-cell receptor binding to peptide/I-Ek
complexes: Correlation of the dissociation rate with T-cell
responsiveness, Proc. Natl. Acad. Sci. USA 91, 12862 (1994).

[32] Y. Sykulev et al., High-affinity reactions between antigen-
specific T-cell receptors and peptides associated with
allogeneic and syngeneic major histocompatibility complex
class I proteins, Proc. Natl. Acad. Sci. USA 91, 11487
(1994).

[33] I. A. Wilson, J. J. Skehel, and D. C. Wiley, Structure of the
haemagglutinin membrane glycoprotein of influenza virus at
3 A resolution, Nature 289, 366 (1981).

[34] P. A. Bullough, F. M. Hughson, J. J. Skehel, and D. C. Wiley,
Structure of influenza haemagglutinin at the pH of membrane
fusion, Nature 371, 37 (1994).

[35] J. Chen et al., Structure of the hemagglutinin precursor
cleavage site, a determinant of influenza pathogenicity and
the origin of the labile conformation, Cell 95, 409 (1998).

[36] P. M. Naghdi, The Theory of Shells and Plates (Springer,
Berlin, 1973).

[37] P. Canham, The minimum energy of bending as a possible
explanation of the biconcave shape of the human red blood
cell, J. Theor. Biol. 26, 61 (1970).

PHYSICAL REVIEW E 96, 042409 (2017)

[38] W. Helfrich, Elastic properties of lipid bilayers: Theory and
possible experiments, Z. Naturforsch. C 28, 693 (1973).

[39] U. Seifert and S. A. Langer, Viscous modes of fluid bilayer
membranes, Europhys. Lett. 23, 71 (1993).

[40] J. B. Fournier, Nontopological Saddle-Splay and Curvature
Instabilities from Anisotropic Membrane Inclusions, Phys.
Rev. Lett. 76, 4436 (1996).

[41] R. Bar-Ziv, R. Menes, E. Moses, and S. A. Safran, Local
Unbinding of Pinched Membranes, Phys. Rev. Lett. 75, 3356
(1995).

[42] U. Seifert, Configurations of fluid membranes and vesicles,
Adv. Phys. 46, 13 (1997).

[43] S. M. Leitenberger, E. Reister-Gottfried, and U. Seifert,
Curvature coupling dependence of membrane protein diffusion
coefficients, Langmuir 24, 1254 (2008).

[44] A. Maitra, P. Srivastava, M. Rao, and S. Ramaswamy, Activat-
ing Membranes, Phys. Rev. Lett. 112, 258101 (2014).

[45] 1. Derényi, F. Jiilicher, and J. Prost, Formation and Interaction
of Membrane Tubes, Phys. Rev. Lett. 88, 238101 (2002).

[46] M. Rahimi, A. DeSimone, and M. Arroyo, Curved fluid
membranes behave laterally as effective viscoelastic media,
Soft Matter 9, 11033 (2013).

[47] U. Seifert, K. Berndl, and R. Lipowsky, Shape transformations
of vesicles: Phase diagram for spontaneous- curvature and
bilayer-coupling models, Phys. Rev. A 44, 1182 (1991).

[48] N. Dan, P. Pincus, and S. A. Safran, Membrane-induced
interactions between inclusions, Langmuir 9, 2768 (1993).

[49] M. D. El Alaoui Faris, D. Lacoste, J. Pecreaux, J. F. Joanny, J.
Prost, and P. Bassereau, Membrane Tension Lowering Induced
by Protein Activity, Phys. Rev. Lett. 102, 038102 (2009).

[50] J. L. McWhirter, G. Ayton, and G. A. Voth, Coupling field
theory with mesoscopic dynamical simulations of multicom-
ponent lipid bilayers, Biophys. J. 87, 3242 (2004).

[51] D.J. Steigmann, On the relationship between the Cosserat and
Kirchhoff-Love theories of elastic shells, Math. Mech. Solids
4,275 (1998).

[52] M. Rahimi and M. Arroyo, Shape dynamics, lipid hydrody-
namics, and the complex viscoelasticity of bilayer membranes,
Phys. Rev. E 86, 011932 (2012).

[53] M. Arroyo and A. De Simone, Relaxation dynamics of fluid
membranes, Phys. Rev. E 79, 031915 (2009).

[54] J. Guven, Membrane geometry with auxiliary variables and
quadratic constraints, J. Phys. A: Math. Gen. 37, L313
(2004).

[55] R. Capovilla and J. Guven, Stresses in lipid membranes,
J. Phys. A: Math. Gen. 35, 6233 (2002).

[56] T. R. Powers, Dynamics of filaments and membranes in a
viscous fluid, Rev. Mod. Phys. 82, 1607 (2010).

[57] A. Agrawal and D. J. Steigmann, Modeling protein-mediated
morphology in biomembranes, Biomech. Model. Mechan. 8,
371 (2008).

[58] A. Agrawal and D. J. Steigmann, Boundary-value problems in
the theory of lipid membranes, Continuum Mech. Thermodyn.
21, 57 (2009).

[59] D. J. Steigmann, Fluid films with curvature elasticity, Arch.
Ration. Mech. Anal. 150, 127 (1999).

[60] P. Rangamani, A. Agrawal, K. K. Mandadapu, G. Oster, and
D. J. Steigmann, Interaction between surface shape and intra-
surface viscous flow on lipid membranes, Biomech. Model.
Mechan. 12, 833 (2012).

042409-32


https://doi.org/10.1126/science.aad9964
https://doi.org/10.1126/science.aad9964
https://doi.org/10.1126/science.aad9964
https://doi.org/10.1126/science.aad9964
https://doi.org/10.1371/journal.pcbi.1004481
https://doi.org/10.1371/journal.pcbi.1004481
https://doi.org/10.1371/journal.pcbi.1004481
https://doi.org/10.1371/journal.pcbi.1004481
https://doi.org/10.1073/pnas.111536798
https://doi.org/10.1073/pnas.111536798
https://doi.org/10.1073/pnas.111536798
https://doi.org/10.1073/pnas.111536798
https://doi.org/10.1038/srep00017
https://doi.org/10.1038/srep00017
https://doi.org/10.1038/srep00017
https://doi.org/10.1038/srep00017
https://doi.org/10.1016/j.bpj.2015.06.010
https://doi.org/10.1016/j.bpj.2015.06.010
https://doi.org/10.1016/j.bpj.2015.06.010
https://doi.org/10.1016/j.bpj.2015.06.010
https://doi.org/10.1126/science.1092586
https://doi.org/10.1126/science.1092586
https://doi.org/10.1126/science.1092586
https://doi.org/10.1126/science.1092586
https://doi.org/10.1016/S0006-3495(03)74726-2
https://doi.org/10.1016/S0006-3495(03)74726-2
https://doi.org/10.1016/S0006-3495(03)74726-2
https://doi.org/10.1016/S0006-3495(03)74726-2
https://doi.org/10.1103/PhysRevLett.89.268101
https://doi.org/10.1103/PhysRevLett.89.268101
https://doi.org/10.1103/PhysRevLett.89.268101
https://doi.org/10.1103/PhysRevLett.89.268101
https://doi.org/10.1016/j.bbamcr.2005.06.010
https://doi.org/10.1016/j.bbamcr.2005.06.010
https://doi.org/10.1016/j.bbamcr.2005.06.010
https://doi.org/10.1016/j.bbamcr.2005.06.010
https://doi.org/10.1021/cb800012x
https://doi.org/10.1021/cb800012x
https://doi.org/10.1021/cb800012x
https://doi.org/10.1021/cb800012x
https://doi.org/10.1038/nature02013
https://doi.org/10.1038/nature02013
https://doi.org/10.1038/nature02013
https://doi.org/10.1038/nature02013
https://doi.org/10.1038/ncb2561
https://doi.org/10.1038/ncb2561
https://doi.org/10.1038/ncb2561
https://doi.org/10.1038/ncb2561
https://doi.org/10.1016/j.celrep.2013.08.024
https://doi.org/10.1016/j.celrep.2013.08.024
https://doi.org/10.1016/j.celrep.2013.08.024
https://doi.org/10.1016/j.celrep.2013.08.024
https://doi.org/10.1126/science.1153634
https://doi.org/10.1126/science.1153634
https://doi.org/10.1126/science.1153634
https://doi.org/10.1126/science.1153634
https://doi.org/10.1146/annurev.immunol.16.1.523
https://doi.org/10.1146/annurev.immunol.16.1.523
https://doi.org/10.1146/annurev.immunol.16.1.523
https://doi.org/10.1146/annurev.immunol.16.1.523
https://doi.org/10.1073/pnas.91.26.12862
https://doi.org/10.1073/pnas.91.26.12862
https://doi.org/10.1073/pnas.91.26.12862
https://doi.org/10.1073/pnas.91.26.12862
https://doi.org/10.1073/pnas.91.24.11487
https://doi.org/10.1073/pnas.91.24.11487
https://doi.org/10.1073/pnas.91.24.11487
https://doi.org/10.1073/pnas.91.24.11487
https://doi.org/10.1038/289366a0
https://doi.org/10.1038/289366a0
https://doi.org/10.1038/289366a0
https://doi.org/10.1038/289366a0
https://doi.org/10.1038/371037a0
https://doi.org/10.1038/371037a0
https://doi.org/10.1038/371037a0
https://doi.org/10.1038/371037a0
https://doi.org/10.1016/S0092-8674(00)81771-7
https://doi.org/10.1016/S0092-8674(00)81771-7
https://doi.org/10.1016/S0092-8674(00)81771-7
https://doi.org/10.1016/S0092-8674(00)81771-7
https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1209/0295-5075/23/1/012
https://doi.org/10.1209/0295-5075/23/1/012
https://doi.org/10.1209/0295-5075/23/1/012
https://doi.org/10.1209/0295-5075/23/1/012
https://doi.org/10.1103/PhysRevLett.76.4436
https://doi.org/10.1103/PhysRevLett.76.4436
https://doi.org/10.1103/PhysRevLett.76.4436
https://doi.org/10.1103/PhysRevLett.76.4436
https://doi.org/10.1103/PhysRevLett.75.3356
https://doi.org/10.1103/PhysRevLett.75.3356
https://doi.org/10.1103/PhysRevLett.75.3356
https://doi.org/10.1103/PhysRevLett.75.3356
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1021/la702319q
https://doi.org/10.1021/la702319q
https://doi.org/10.1021/la702319q
https://doi.org/10.1021/la702319q
https://doi.org/10.1103/PhysRevLett.112.258101
https://doi.org/10.1103/PhysRevLett.112.258101
https://doi.org/10.1103/PhysRevLett.112.258101
https://doi.org/10.1103/PhysRevLett.112.258101
https://doi.org/10.1103/PhysRevLett.88.238101
https://doi.org/10.1103/PhysRevLett.88.238101
https://doi.org/10.1103/PhysRevLett.88.238101
https://doi.org/10.1103/PhysRevLett.88.238101
https://doi.org/10.1039/c3sm51748a
https://doi.org/10.1039/c3sm51748a
https://doi.org/10.1039/c3sm51748a
https://doi.org/10.1039/c3sm51748a
https://doi.org/10.1103/PhysRevA.44.1182
https://doi.org/10.1103/PhysRevA.44.1182
https://doi.org/10.1103/PhysRevA.44.1182
https://doi.org/10.1103/PhysRevA.44.1182
https://doi.org/10.1021/la00035a005
https://doi.org/10.1021/la00035a005
https://doi.org/10.1021/la00035a005
https://doi.org/10.1021/la00035a005
https://doi.org/10.1103/PhysRevLett.102.038102
https://doi.org/10.1103/PhysRevLett.102.038102
https://doi.org/10.1103/PhysRevLett.102.038102
https://doi.org/10.1103/PhysRevLett.102.038102
https://doi.org/10.1529/biophysj.104.045716
https://doi.org/10.1529/biophysj.104.045716
https://doi.org/10.1529/biophysj.104.045716
https://doi.org/10.1529/biophysj.104.045716
https://doi.org/10.1177/108128659900400301
https://doi.org/10.1177/108128659900400301
https://doi.org/10.1177/108128659900400301
https://doi.org/10.1177/108128659900400301
https://doi.org/10.1103/PhysRevE.86.011932
https://doi.org/10.1103/PhysRevE.86.011932
https://doi.org/10.1103/PhysRevE.86.011932
https://doi.org/10.1103/PhysRevE.86.011932
https://doi.org/10.1103/PhysRevE.79.031915
https://doi.org/10.1103/PhysRevE.79.031915
https://doi.org/10.1103/PhysRevE.79.031915
https://doi.org/10.1103/PhysRevE.79.031915
https://doi.org/10.1088/0305-4470/37/28/L02
https://doi.org/10.1088/0305-4470/37/28/L02
https://doi.org/10.1088/0305-4470/37/28/L02
https://doi.org/10.1088/0305-4470/37/28/L02
https://doi.org/10.1088/0305-4470/35/30/302
https://doi.org/10.1088/0305-4470/35/30/302
https://doi.org/10.1088/0305-4470/35/30/302
https://doi.org/10.1088/0305-4470/35/30/302
https://doi.org/10.1103/RevModPhys.82.1607
https://doi.org/10.1103/RevModPhys.82.1607
https://doi.org/10.1103/RevModPhys.82.1607
https://doi.org/10.1103/RevModPhys.82.1607
https://doi.org/10.1007/s10237-008-0143-0
https://doi.org/10.1007/s10237-008-0143-0
https://doi.org/10.1007/s10237-008-0143-0
https://doi.org/10.1007/s10237-008-0143-0
https://doi.org/10.1007/s00161-009-0102-8
https://doi.org/10.1007/s00161-009-0102-8
https://doi.org/10.1007/s00161-009-0102-8
https://doi.org/10.1007/s00161-009-0102-8
https://doi.org/10.1007/s002050050183
https://doi.org/10.1007/s002050050183
https://doi.org/10.1007/s002050050183
https://doi.org/10.1007/s002050050183
https://doi.org/10.1007/s10237-012-0447-y
https://doi.org/10.1007/s10237-012-0447-y
https://doi.org/10.1007/s10237-012-0447-y
https://doi.org/10.1007/s10237-012-0447-y

IRREVERSIBLE THERMODYNAMICS OF CURVED LIPID ...

[61] A. Agrawal and D. J. Steigmann, A model for surface diffusion
of trans-membrane proteins on lipid bilayers, Z. Angew. Math.
Phys. 62, 549 (2011).

[62] R. A. Sauer, T. X. Duong, K. K. Mandadapu, and D. J.
Steigmann, A stabilized finite element formulation for liquid
shells and its application to lipid bilayers, J. Comput. Phys.
330, 436 (2017).

[63] L. Scriven, Dynamics of a fluid interface: Equation of motion
for Newtonian surface fluids, Chem. Eng. Sci. 12, 98 (1960).

[64] D. A. Edwards, H. Brenner, and D. Wasan, Interfacial Trans-
port Processes and Rheology. Butterworth-Heinemann Series
in Chemical Engineering (Butterworth-Heinemann, Boston,
1991).

[65] P.Rangamani, K. K. Mandadapu, and G. Oster, Proten-induced
membrane curvature alters local membrane tension, Biophys.
J.107, 751 (2014).

[66] N. Walani, J. Torres, and A. Agrawal, Endocytic proteins
drive vesicle growth via instability in high membrane ten-
sion environment, Proc. Natl. Acad. Sci. USA 112, E1423
(2015).

[67] 1. Prigogine, Introduction to Thermodynamics of Irreversible
Processes (Interscience Publishers, New York, 1961).

[68] S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics
(Dover, London, 1984).

[69] S. Carroll, Lecture notes on general relativity, arXiv:gr-
qc/9712019.

[70] R. A. Sauer and T. X. Duong, On the theoretical foundations of
thin solid and liquid shells, Math. Mech. Solids 22, 343 (2017).

[71] P. Chadwick, Continuum mechanics: Concise Theory and
Problems (Dover, London, 1999).

[72] O.-Y. Zhong-Can, L. Ji-Xing, and X. Yu-Zhang, Geometric
Methods in the Elastic Theory of Membranes in Liquid Crystal
Phases, Vol. 2 (World Scientific, Singapore, 1999).

[73] P. M. Naghdi, Finite Deformation of Elastic Rods and Shells
(Springer Netherlands, Dordrecht, 1982), pp. 47-103.

[74] A. E. Green and P. M. Naghdi, Directed fluid sheets, Proc. R.
Soc. London A Mat. 347, 447 (1976).

[75] K. K. Mandadapu, Homogeneous Non-equilibrium Molecular
Dynamics Methods for Calculating the Heat Transport Co-
efficient of Solids and Mixtures. Ph.D. thesis, University of
California, Berkeley, 2011.

[76] P. Curie, Oeuvres publiées par les soins de la Société Frangaise
de Physique (Gauthier-Villars, Paris, 1908).

[77] R. Aris, Vectors, Tensors, and the Basic Equations of Fluid
Mechanics (Dover, London, 1989).

[78] J. T. Jenkins, The equations of mechanical equilibrium of a
model membrane, SIAM J. Appl. Math. 32, 755 (1977).

[79] N. Gov, A. G. Zilman, and S. Safran, Hydrodynamics of
confined membranes, Phys. Rev. E 70, 011104 (2004).

[80] K. Sapp and L. Maibaum, Suppressing membrane height
fluctuations leads to a membrane-mediated interaction among
proteins, Phys. Rev. E 94, 052414 (2016).

[81] F. L. H. Brown, Regulation of protein mobility via thermal
membrane undulations, Biophys. J. 84, 842 (2003).

[82] W. Cai and T. C. Lubensky, Covariant Hydrodynamics of Fluid
Membranes, Phys. Rev. Lett. 73, 1186 (1994).

PHYSICAL REVIEW E 96, 042409 (2017)

[83] R. A. Sauer and T. Luginsland, A monolithic fluid-structure in-
teraction formulation for solid and liquid membranes including
free-surface contact, arXiv:1710.02128.

[84] H. Duwe and E. Sackmann, Bending elasticity and thermal
excitations of lipid bilayer vesicles: Modulation by solutes,
Physica A 163, 410 (1990).

[85] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform
system. I. Interfacial free energy, J. Chem. Phys. 28, 258
(1958).

[86] T. Hill, An Introduction to Statistical Thermodynamics (Dover,
London, 1960).

[87] A. Panagiotopoulos, Essential Thermodynamics (Drios Press,
2014).

[88] D. J. Korteweg, Sur la forme que prennent les équations
du mouvement des fluides si lon tient compte des forces
capillaires causées par des variations de densité considérables
mais continues et sur la théorie de la capillarité dans lhypothese
dune variation continue de la densité, Arch. Neerl. Sci. Exactes
Nat. Ser. 6, 1 (1901).

[89] D. D. Joseph, Fluid dynamics of two miscible liquids with
diffusion and gradient stresses, Eur. J. Mech. B 9, 565 (1990).

[90] I. Kostin, M. Marion, R. Texier-Picard, and V. A. Volpert,
Modelling of miscible liquids with the Korteweg stress,
ESAIM Math. Model. Num. 37, 741 (2003).

[91] D. Truzzolillo and L. Cipelletti, Off-equilibrium surface
tension in miscible fluids, Soft Matter 13, 13 (2017).

[92] G. N. Wells, E. Kuhl, and K. Garikipati, A discontinuous
Galerkin method for the Cahn-Hilliard equation, J. Comput.
Phys. 218, 860 (2006).

[93] J. Schoneberg, I.-H. Lee, J. H. Iwasa, and J. H. Hurley, Reverse-
topology membrane scission by the ESCRT proteins, Nat. Rev.
Mol. Cell Biol. 18, 5 (2017).

[94] N. Chiaruttini et al., Relaxation of loaded ESCRT-III spiral
springs drives membrane deformation, Cell 163, 866 (2015).

[95] T. E. de Donder and P. V. Rysselberghe, Thermodynamic
Theory of Affinity: A Book of Principles (Gauthier-Villars,
Paris, 1936).

[96] M. Kraus, W. Wintz, U. Seifert, and R. Lipowsky, Fluid
Vesicles in Shear Flow, Phys. Rev. Lett. 77, 3685 (1996).

[97] G. Brannigan and F. L. H. Brown, Contributions of Gaussian
curvature and nonconstant lipid volume to protein deformation
of lipid bilayers, Biophys. J. 92, 864 (2007).

[98] B. West, F. L. H. Brown, and F. Schmid, Membrane-protein in-
teractions in a generic coarse-grained model for lipid bilayers,
Biophys. J. 96, 101 (2009).

[99] P. D. Blood and G. A. Voth, Direct observation of
Bin/amphiphysin/Rvs (BAR) domain-induced membrane cur-
vature by means of molecular dynamics simulations,
Proc. Natl. Acad. Sci. USA 103, 15068 (2006).

[100] J. K. Sigurdsson, F. L. H. Brown, and P. J. Atzberger,
Hybrid continuum-particle method for fluctuating lipid bilayer
membranes with diffusing protein inclusions, J. Comput. Phys.
252, 65 (2013).

[101] S. Katira, K. K. Mandadapu, S. Vaikuntanathan, B. Smit, and
D. Chandler, Pre-transition effects mediate forces of assembly
between transmembrane proteins, eLife 5, 13150 (2016).

042409-33


https://doi.org/10.1007/s00033-011-0132-5
https://doi.org/10.1007/s00033-011-0132-5
https://doi.org/10.1007/s00033-011-0132-5
https://doi.org/10.1007/s00033-011-0132-5
https://doi.org/10.1016/j.jcp.2016.11.004
https://doi.org/10.1016/j.jcp.2016.11.004
https://doi.org/10.1016/j.jcp.2016.11.004
https://doi.org/10.1016/j.jcp.2016.11.004
https://doi.org/10.1016/0009-2509(60)87003-0
https://doi.org/10.1016/0009-2509(60)87003-0
https://doi.org/10.1016/0009-2509(60)87003-0
https://doi.org/10.1016/0009-2509(60)87003-0
https://doi.org/10.1016/j.bpj.2014.06.010
https://doi.org/10.1016/j.bpj.2014.06.010
https://doi.org/10.1016/j.bpj.2014.06.010
https://doi.org/10.1016/j.bpj.2014.06.010
https://doi.org/10.1073/pnas.1418491112
https://doi.org/10.1073/pnas.1418491112
https://doi.org/10.1073/pnas.1418491112
https://doi.org/10.1073/pnas.1418491112
http://arxiv.org/abs/arXiv:gr-qc/9712019
https://doi.org/10.1177/1081286515594656
https://doi.org/10.1177/1081286515594656
https://doi.org/10.1177/1081286515594656
https://doi.org/10.1177/1081286515594656
https://doi.org/10.1098/rspa.1976.0011
https://doi.org/10.1098/rspa.1976.0011
https://doi.org/10.1098/rspa.1976.0011
https://doi.org/10.1098/rspa.1976.0011
https://doi.org/10.1137/0132063
https://doi.org/10.1137/0132063
https://doi.org/10.1137/0132063
https://doi.org/10.1137/0132063
https://doi.org/10.1103/PhysRevE.70.011104
https://doi.org/10.1103/PhysRevE.70.011104
https://doi.org/10.1103/PhysRevE.70.011104
https://doi.org/10.1103/PhysRevE.70.011104
https://doi.org/10.1103/PhysRevE.94.052414
https://doi.org/10.1103/PhysRevE.94.052414
https://doi.org/10.1103/PhysRevE.94.052414
https://doi.org/10.1103/PhysRevE.94.052414
https://doi.org/10.1016/S0006-3495(03)74903-0
https://doi.org/10.1016/S0006-3495(03)74903-0
https://doi.org/10.1016/S0006-3495(03)74903-0
https://doi.org/10.1016/S0006-3495(03)74903-0
https://doi.org/10.1103/PhysRevLett.73.1186
https://doi.org/10.1103/PhysRevLett.73.1186
https://doi.org/10.1103/PhysRevLett.73.1186
https://doi.org/10.1103/PhysRevLett.73.1186
http://arxiv.org/abs/arXiv:1710.02128
https://doi.org/10.1016/0378-4371(90)90349-W
https://doi.org/10.1016/0378-4371(90)90349-W
https://doi.org/10.1016/0378-4371(90)90349-W
https://doi.org/10.1016/0378-4371(90)90349-W
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1051/m2an:2003042
https://doi.org/10.1051/m2an:2003042
https://doi.org/10.1051/m2an:2003042
https://doi.org/10.1051/m2an:2003042
https://doi.org/10.1039/C6SM01026A
https://doi.org/10.1039/C6SM01026A
https://doi.org/10.1039/C6SM01026A
https://doi.org/10.1039/C6SM01026A
https://doi.org/10.1016/j.jcp.2006.03.010
https://doi.org/10.1016/j.jcp.2006.03.010
https://doi.org/10.1016/j.jcp.2006.03.010
https://doi.org/10.1016/j.jcp.2006.03.010
https://doi.org/10.1038/nrm.2016.121
https://doi.org/10.1038/nrm.2016.121
https://doi.org/10.1038/nrm.2016.121
https://doi.org/10.1038/nrm.2016.121
https://doi.org/10.1016/j.cell.2015.10.017
https://doi.org/10.1016/j.cell.2015.10.017
https://doi.org/10.1016/j.cell.2015.10.017
https://doi.org/10.1016/j.cell.2015.10.017
https://doi.org/10.1103/PhysRevLett.77.3685
https://doi.org/10.1103/PhysRevLett.77.3685
https://doi.org/10.1103/PhysRevLett.77.3685
https://doi.org/10.1103/PhysRevLett.77.3685
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1529/biophysj.108.138677
https://doi.org/10.1529/biophysj.108.138677
https://doi.org/10.1529/biophysj.108.138677
https://doi.org/10.1529/biophysj.108.138677
https://doi.org/10.1073/pnas.0603917103
https://doi.org/10.1073/pnas.0603917103
https://doi.org/10.1073/pnas.0603917103
https://doi.org/10.1073/pnas.0603917103
https://doi.org/10.1016/j.jcp.2013.06.016
https://doi.org/10.1016/j.jcp.2013.06.016
https://doi.org/10.1016/j.jcp.2013.06.016
https://doi.org/10.1016/j.jcp.2013.06.016
https://doi.org/10.7554/eLife.13150
https://doi.org/10.7554/eLife.13150
https://doi.org/10.7554/eLife.13150
https://doi.org/10.7554/eLife.13150



