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This document is the supplemental material (SM) to the manuscript of the same name. In §1, we
summarize the behavior of a lipid membrane in a general setting, following Sahu et al. (Phys. Rev.
E, 96, 2017) as well as Alkadri & Mandadapu (Phys. Rev. E, 112, 2025). From here, the equations
are specialized to the case of a planar bilayer with small out-of-plane undulations. Impermeable
membranes are considered in §2, with the results extended to semipermeable membranes in §3.
Our analysis of prior experiments is provided in §4.

1. The general governing equations

Consider an arbitrarily curved and deforming lipid membrane surface, surrounded by a solute-
containing Newtonian fluid. Quantities above (resp. below) the membrane are labeled with a ‘plus’
(resp. ‘minus’) accent. In what follows, we present the equations governing the fluid, membrane, and
solutes—as well as their interactions. None of the results in this section are new: the description
of three-dimensional (3D) systems is well-known in the study of fluid mechanics and transport
phenomena, while the membrane equations and coupling conditions were obtained in Refs. [1, 2].

1.1. The bulk fluid

The fundamental unknowns describing an incompressible Newtonian fluid are the pressure field p±

and the velocity field v±. The corresponding governing equations are the continuity equation and
local form of the balance of linear momentum, which for the fluid above and below the membrane
are written as

∇ · v± = 0 and ρf v̇
± = ∇ · σ± . (1)

In Eq. (1)2, ρf is the fluid mass density and v̇ is the fluid acceleration, or equivalently the material
time derivative of the velocity: v̇ = ∂v/∂t+ (∇v)v. The stress tensor σ± for a Newtonian fluid is
given by

σ± = −p±I + µf

[ (
∇v±) +

(
∇v±)T] , (2)

where the fluid shear viscosity µf is assumed to be the same above and below the membrane. Upon
substituting Eq. (2) into Eq. (1)2 and simplifying with Eq. (1)1, we obtain

ρf v̇
± = µf∇2v± − ∇p± . (3)

Equation (3) is the well-known Navier–Stokes equation, which along with Eq. (1)1 can be used to
solve for the velocity and pressure fields in the fluid.
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1.2. The osmolyte species

The fundamental unknown describing the osmolyte species is the concentration field c±. The well-
known diffusion equation governs the evolution of the solute concentration over time, and is written
as

∂c±

∂t
+ v± · ∇c± = −∇ · j± , where j± = −D∇c± (4)

is the diffusive concentration flux. In Eq. (4)2, D is the solute diffusion constant, which is assumed
to be the same on both sides of the membrane. By substituting Eq. (4)2 into Eq. (4)1, we obtain

∂c±

∂t
+ v± · ∇c± = D∇2c± , (5)

which is a single equation for the concentration field c±.

1.3. The lipid membrane

The fundamental unknowns describing an arbitrarily curved and deforming lipid membrane are the
velocity field v and the surface tension field λ. Both quantities are defined only on the membrane
surface, whose position is denoted x. It is useful to decompose the membrane velocity field as

v = vαaα + vn , (6)

where a detailed account of membrane geometry, kinematics, and dynamics are provided in Ref. [1].
We briefly mention that (i) ‘α’ and other Greek indices span the set {1, 2} and denote independent
directions on the membrane surface, (ii) summation is implied over repeated indices, (iii) aα are
in-plane vectors that form a basis of the plane tangent to the surface, and (iv) n is the unit normal
to the membrane, which points into the fluid region above the membrane labeled with a ‘plus’
accent.

With Eq. (6), one can treat vα, v, and λ as the four fundamental membrane unknowns. The
corresponding governing equations are the continuity equation, two in-plane equations, and shape
(or out-of-plane) equation—respectively given by

vα;α − 2vH = 0 , (7)

aαβλ,β + πβα
;β + fα = 0 , (8)

and
f + 2λH + παβbαβ − 2kbH (H2 −K) − kb∆sH = 0 . (9)

In the membrane equations, we introduce the following notation: (i) ( · );α denotes the covariant
derivative in the ‘α’ direction, (ii) aαβ is the contravariant metric, which describes distances on the
membrane surface, (iii) παβ = πβα are the in-plane viscous stresses, (iv) bαβ are the components
of the curvature tensor, (v) kb is the bending modulus of the membrane, (vi) H is the mean
curvature, (vii) K is the Gaussian curvature, and (viii) ∆s denotes the surface Laplacian operator,
where ∆s( · ) := aαβ( · );αβ. In addition, f is the total force acting on the membrane, which is
decomposed into in-plane and out-of-plane components as

f = fαaα + fn . (10)
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1.4. The coupling conditions

To close our mathematical description of the general governing equations, we require coupling
conditions at the membrane surface. To begin, we recognize the force exerted on the membrane by
the surrounding fluid is given by

f =
(
σ+ − σ−)n = JσK n , (11)

where J( · )K := ( · )+ − ( · )− denotes the jump in a quantity at the membrane surface. Next, we
assume there is no in-plane slip between the membrane and fluid velocities, written as

v · aα = v± · aα . (12)

Although the bulk velocity field must be continuous, such that at the membrane surface

v+ · n = v− · n , (13)

these velocities need not be equal to the out-of-plane membrane velocity if fluid can pass through
the membrane. The relationship between the membrane and bulk velocities in the out-of-plane
direction was obtained in Ref. [2], which studied the coupled system by applying the concepts of
irreversible thermodynamics within a differential geometric setting. Their result can be written as

f · n + kBθ JcK = κ
(
v± − v

)
· n , (14)

where kBθ is the thermal energy. The membrane impermeability κ is the transport coefficient for
water flow through the membrane, with κ → ∞ in the limit of an impermeable membrane. Finally,
we assume the membrane is ideally selective, for which fluid can pass through the membrane while
solutes cannot. In this limit, we require the sum of the diffusive and convective fluxes of solute
normal to the membrane to be zero—expressed as[

j± + c±
(
v± − v

)]
· n = 0 . (15)

With Eqs. (11)–(15), our coupled description of the membrane and its surroundings is mathemat-
ically well-posed.

2. The impermeable membrane surrounded by fluid

Consider a fluctuating, nearly planar, impermeable lipid membrane surrounded by fluid. The
stationary base state is captured by the quantities

h(0) = 0 , v(0)α = 0 , λ(0) = λc , v±(0) = 0 , and p±(0) = pc , (16)

where the characteristic base tension λc and pressure pc are known constants, and Roman indices
span {1, 2, 3}. Perturbed (or fluctuating) quantities are described with a ‘tilde’ in the SM (though
not the main text). In this case, we have

h = h̃ , vα = ṽα , λ = λc + λ̃ , v±j = ṽ±
j , and p± = pc + p̃± . (17)
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2.1. The fluid solution

The perturbed fluid is governed by the incompressibility constraint and time-dependent Stokes
equation, respectively given by

ṽ±
j, j = 0 and ρf ṽ

±
j, t = µf ṽ

±
j, kk − p̃±

, j . (18)

Here and from now on, the summation convention is assumed over repeated Roman indices. At
this point all fluid unknowns are decomposed into normal modes as

p̃±(x, y, z, t) =
∑
q

p̂±q (z) exp
[
i(qxx+ qyy) − ωq t

]
(19)

and
ṽ±
j (x, y, z, t) =

∑
q

v̂±jq(z) exp
[
i(qxx+ qyy) − ωq t

]
. (20)

Taking the divergence of the Stokes equation and applying the continuity equation reveals that the
pressure field is harmonic: p̃±

, jj = 0. Substituting the normal mode decomposition yields

d2 p̂±q
dz2 = q2 p̂±q , for which p̂±q = p̄±q e∓qz . (21)

In Eq. (21), we assume the perturbed pressure decays infinitely far from the membrane surface, and
p̄±q are integration constants to be determined via boundary conditions. The pressure solution is
treated as a forcing term in the Stokes equation. Following §94 of Ref. [3], the (complex) modified
wavenumber kν is defined via the relations

k 2
ν := q2 − ωq

νf
, where νf :=

µf
ρf

and Re{kν} ≥ 0 (22)

by construction. We find the in-plane and out-of-plane fluid equations—in terms of normal modes—
to respectively be expressed as

d2 v̂±αq
dz2 = k 2

ν v̂±αq +
iqα p̄

±
q

µf
e∓qz and

d2 v̂±zq
dz2 = k 2

ν v̂±zq ∓
q p̄±q
µf

e∓qz . (23)

It is straightforward to verify that the solutions to Eq. (23) are given by

v̂±αq = v̄±αq e
∓kνz +

iqα p̄
±
q

µf(q
2 − k 2

ν )
e∓qz and v̂±zq = v̄±zq e

∓kνz ∓
q p̄±q

µf(q
2 − k 2

ν )
e∓qz , (24)

where v̄±αq and v̄±zq are constants of integration that will be determined subsequently.

2.2. The conditions coupling the membrane and fluid

With the generic form of the fluid solution, we seek to determine the relationship between membrane
and fluid unknowns. We begin by decomposing all membrane variables in terms of normal modes
as

λ̃(x, y, t) =
∑
q

λ̂q exp
[
i(qxx+ qyy) − ωq t

]
, (25)
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h̃(x, y, t) =
∑
q

ĥq exp
[
i(qxx+ qyy) − ωq t

]
, (26)

and
ṽα(x, y, t) =

∑
q

v̂αq exp
[
i(qxx+ qyy) − ωq t

]
. (27)

The no-slip condition at the membrane surface requires h̃,t = ṽ±
z |z=0, for which

− ωq ĥq = v̄±zq ∓
q p̄±q

µf(q
2 − k 2

ν )
. (28)

Furthermore, the requirement that both the membrane and the surrounding fluid are incompressible
requires ṽ±

z, z|z=0 = 0, which yields

v̄±zq = ±
q2 p̄±q

kνµf(q
2 − k 2

ν )
. (29)

By substituting Eq. (29) into Eq. (28) and rearranging terms, we find the membrane height and
fluid pressure are related according to

p̄±q = ∓
µfνfkν

q

(
q2 − k 2

ν

) (
q + kν

)
ĥq . (30)

The in-plane components of the no-slip condition are similarly obtained as

v̂αq = v̄±αq +
iqα p̄

±
q

µf(q
2 − k 2

ν )
. (31)

2.3. The membrane solution and dispersion relation

At this point, we turn to the perturbed membrane equations to solve for the dynamics of the
system. The linearized continuity, shape, and in-plane equations about a flat patch are respectively
given by [4]

ṽα, α = 0 , (32)

ρm h̃,tt = λc h̃,αα − kb
2

h̃,ααββ − p̃+ + p̃− , (33)
and

ρm ṽα, t = ζ ṽα, ββ + λ̃,α + µf
(
ṽ+
α, z + ṽ+

z, α − ṽ−
α, z − ṽ−

z, α

)
, (34)

where all fluid quantities are evaluated at z = 0: the location of the unperturbed membrane surface.
Note that in Eq. (33), we omit the normal viscous forces because they are identically zero (recall
ṽ±
z, z|z=0 = 0). In terms of normal modes, the continuity equation (32) is expressed as iqα v̂αq = 0,

which requires qx v̂xq = −qy v̂yq. The shape equation (33) is expressed in terms of normal modes as

ρm ω2
q ĥq = −E ĥq − p̄+q + p̄−q , (35)

where E := λcq
2+ 1

2 kbq
4 as introduced in the main text. Substituting Eq. (30) into Eq. (35) yields

an equation in which every terms is linear in ĥq. Assuming a nontrivial solution, for which ĥq ̸= 0,
and then substituting Eq. (22)1 yields

ρm ν 2
f
(
q2 − k 2

ν

)2 −
2µfνfkν

q

(
q2 − k 2

ν

) (
q + kν

)
+ E = 0 , (36)
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which is a fourth-order polynomial for kν . Since we require the real part of kν to be positive by
construction, only two solutions are valid—and can be understood by drawing analogy to a classical
spring–mass–damper system. Our code to solve Eq. (36) for physical kν , with Re{kν} ≥ 0, and
determine the corresponding ωq is provided at github.com/sahu-lab/osmosis-flat.

2.4. The trivial in-plane solution

The in-plane equations (34) were not used to obtain Eq. (36). To probe the in-plane dynamics, we
express Eq. (34) in terms of normal modes—and substitute the fluid solution (24)—to obtain

−ρm ωq v̂αq = −q2ζ v̂αq + iqα λ̂q + iqαµf
(
v̄+zq− v̄+zq

)
− kνµf

(
v̄+αq+ v̄−αq

)
− 2iqαq

q2 − k 2
ν

(
p̄+q + p̄−q

)
. (37)

From Eq. (30), we recognize p̄+q + p̄−q = 0. Equation (29) then reveals v̄+zq − v̄−zq = 0, while Eq. (31)
requires 2v̂αq = v̄+αq + v̄−αq. With these results, Eq. (38) simplifies to

− ρm ωq v̂αq = −q2ζ v̂αq + iqα λ̂q − 2kνµf v̂αq . (38)

Taking the divergence of Eq. (38) and applying the continuity equation iqα v̂αq = 0 reveals

λ̂q = 0 . (39)

With Eq. (39), Eq. (38) simplifies to a form where every term is linear in v̂αq. If we assume a
nontrivial solution (v̂αq ̸= 0) and substitute Eq. (22)1 for ωq, we find

ρm νf k
2
ν + 2µfkν + q2

(
ζ − νfρm

)
= 0 . (40)

Note that for typical fluid and membrane parameters, all three coefficients in the quadratic equation
for kν are positive—and so all solutions involve kν either being negative, or having a negative real
part. Thus, there are no physical solutions kν for the in-plane dynamics.

3. The semipermeable membrane surrounded by solutes and fluid

The stationary base state of the semipermeable scenario is given by Eq. (16), along with a uniform
concentration field

c±(0) = c0 (41)

for known, constant c0. The concentration of the perturbed system is given by c± = c0+ c̃±, where
the ‘tilde’ accent is once again only used in the SM [cf. Eq. (17)].

3.1. The solute concentration profile

The time evolution of the perturbed concentration c̃± is given by the diffusion equation

c̃±,t = Dc̃±,jj , (42)

where D is the solute diffusion constant in the surrounding fluid at infinite dilution. When the
perturbed concentration is decomposed into normal modes as

c̃±(x, y, z, t) =
∑
q

ĉ±q (z) exp
[
i(qxx+ qyy) − ωq t

]
, (43)

https://github.com/sahu-lab/osmosis-flat
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the diffusion equation (42) simplifies to

d2 ĉ±q
dz2 = k 2

D ĉ±q , where k 2
D := q2 − ωq

D
and Re{kD} ≥ 0 (44)

by construction [cf. Eq. (22)]. With the assumption that concentration fluctuations decay infinitely
far from the membrane surface, the concentration solution is expressed as

ĉ±q = c̄±q e∓kDz , (45)

where c̄±q are two integration constants that will be determined from the boundary and coupling
conditions.

3.2. The conditions coupling the membrane, fluid, and solutes

When the lipid membrane is semipermeable, fluid passes through the membrane while solutes do
not. The linearized equations governing both phenomena were recently found to be [2]

−Dc̃±,z + c0
(
ṽ±
z − h̃,t

)
= 0 and κ

(
ṽ±
z − h̃,t

)
= kBθ

(
c̃+ − c̃−

)
−

(
p̃+ − p̃−) , (46)

where κ is the membrane impermeability. In addition, the z-component of the fluid velocity field
is assumed continuous at the membrane surface—though it may differ from the membrane velocity
h̃,t. With the continuity of v±z at z = 0, as well as Eq. (29), we find (note the general fluid solution
in §2.1 remains valid)

p̄+q = −p̄−q and v̄+zq = v̄−zq . (47)

We also find the no-flux condition (46)1 requires c̃+,z = c̃−,z , for which

c̄+q = −c̄−q . (48)

Accordingly, the fluid pressure, z-component of the fluid velocity, and solute concentration can all
be expressed in terms of p̄+q , v̄+zq, and c̄+q . We do not consider the in-plane fluid behavior, as it led
to a trivial solution in the impermeable scenario.

3.3. The membrane solution and dispersion relation

The membrane equations (32)–(34) are unchanged in the presence of solutes in the surrounding
fluid, as found in Ref. [2]. To determine the dispersion relation from Eq. (35), we require the
relationship between ĥq and p̄+q . To this end, we combine the no-flux condition and permeability
equation (46) to obtain κDc̃+,z /c0 = kBθ(c̃

+ − c̃−) − (p̃+ − p̃−), which is expressed in terms of
normal modes as

− κDkD
c0

c̄+q = 2kBθ c̄
+
q − 2p̄+q . (49)

With Eq. (49), c̄+q can be expressed in terms of p̄+q . Next, we examine the Fourier representation
of the no-flux condition (46)1 after the concentration (45) and fluid velocity (24) solutions are
substituted:

DkD c̄+q
c0

+ v̄+zq −
qp̄+q

µf(q
2 − k 2

ν )
+ ωq ĥq = 0 . (50)
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By then substituting Eq. (29) into Eq. (50),‡ we obtain a relation involving only c̄+q , p̄+q , and ĥq.
Thus, along with Eq. (49), we find ĥq and p̄+q are related according to

p̄+q =
−ωq ĥq

2DkD
2kBθc0 + κDkD

+

(
q

kν
− 1

)
q

µf(q
2 − k 2

ν )

. (51)

Substituting Eqs. (51) and (47)1 into Eq. (35) yields an equation where every term is proportional
to ĥq. Assuming a nontrivial solution (ĥq ≠ 0), we arrive at the dispersion relation

ρm ω2
q + q2λc + q4

kb
2

− 2ωq

2DkD
2kBθc0 + κDkD

+

(
q

kν
− 1

)
q

µf(q
2 − k 2

ν )

= 0 . (52)

Note that Eq. (52) is an implicit equation for ωq, as both kν (22) and kD (44) depend on ωq as well.

3.3.1. The method of numerical solution

Equation (52) is a nonlinear equation for ωq, for which numerical solvers generally (i) require an
initial guess and (ii) provide a single nearby solution. Rather than having to search for a set of
good initial guesses, we instead choose to manipulate Eq. (52) into a polynomial equation for kν .
Before doing so, it is convenient to define the parameter α as

α :=
kBθc0
D

. (53)

The dispersion relation (52) can then be expressed as either

ρm ω2
q + E − 2ωq

1

(α/kD) + (κ/2)
+

(
q

kν
− 1

)
q

ρfωq

= 0 (54)

or
ρm ω2

q + E − 2ωq

1

(α/kD) + (κ/2)
+

q

µfkν (q + kν)

= 0 . (55)

By algebraically manipulating Eq. (55) and expressing kD in terms of kν , we obtain a 14th-order
polynomial equation for kν . Our code to determine the frequencies ωq as a function of q, with
physical kν and kD, is provided at github.com/sahu-lab/osmosis-flat.

3.3.2. An approximate dispersion relation

Recall that the membrane is nearly impermeable, as reflected by κ being large and the permeability
number P := µfq/κ being small. In what follows, we seek to understand how a small but nonzero
P can significantly affect the behavior of the coupled membrane–solute–fluid system. To this end,
Eq. (55) is Taylor expanded about κ−1 = 0 to yield

ρm ω2
q + E −

2ωqµfkν
q

(
q + kν

) [
1 −

2µfkν (q + kν)

κq

(
1 − 2α

κkD

)]
= 0 . (56)

‡Equation (29) is valid in the semipermeable setting, since the membrane and fluid each remain incompressible.

https://github.com/sahu-lab/osmosis-flat
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If κ were set to ∞, then Eq. (56) would simplify to the impermeable dispersion relation (36)—which
is now known to be approximated by ρeff ω

2
q − 4µfq ωq + E = 0. We posit that the fluid inertia

will be approximately accounted for upon changing {ρm, kν} to {ρeff, q} in Eq. (56). The resulting
approximate equation is given by

ρeff ω
2
q + E − 4µfq ωq

[
1 −

4µfq

κ

(
1 − 2α

κkD

)]
= 0 . (57)

Again, since the membrane is nearly impermeable, the kD appearing in Eq. (57) can be approximated
by substituting the impermeable frequency ωimp

q into Eq. (44)2. In what follows, we separately
consider the case where ωimp

q > ω̃D, as is the case for the inertial branch and the membrane branch
outside the dome, and the case where ωimp

q < ω̃D, which is satisfied for the membrane branch inside
the dome.

The case where diffusion is slow.—Following Eq. (13) of the main text, for kD = ∓iqη̃ we
have ĉ+q = c̄+q e±iqη̃z and ĉ−q = c̄−q e∓iqη̃z. Equation (57) can then be written in terms of P and the
osmotic number S := kBθc0/(Dκq) = α/(κq) as

ρeff ω
2
q + E − 4µfq ωq

(
1 − 4P

)
= ± 8iPS

η̃
(4µfq)ωq . (58)

In Eq. (58), the in-phase change to the drag is of order P, and can be neglected—resulting in Eq.
(14) of the main text.

The case where diffusion is fast.—On the membrane branch inside the dome, ω̃D > ωimp
q . To

lowest order in the permeability number P, we find kD = q (1−ωimp
q /ω̃D)

1/2 ∈ R+ and ĉ±q = c̄±q e∓kDz:
an exponentially decaying, physically meaningful concentration field. The in-phase corrections to
Eq. (57) are negligible, and the frequency ωq is approximately equal to its impermeable counterpart.

4. The analysis of relevant experiments

This section details how the data in Fig. 5 of the main text was collected. The raw data from
prior studies, as well as all processing scripts, is shared at github.com/sahu-lab/osmosis-flat.
Data was collected from published figures using the online tool apps.automeris.io/wpd4. Our
analysis of experimental data is based on the description in Ref. [5]. More precisely, suppose the
instantaneous radial profile r(φ, t) of the vesicle’s equatorial cross-section is given by [5, Eq. (8)]

r(φ, t) = rv(t)

[
1 +

mmax∑
m=1

(
am cos(mφ) + bm sin(mφ)

)]
, (59)

where φ is the azimuthal angle, rv(t) is the instantaneous vesicle radius, and rv := ⟨rv(t)⟩ is the
average vesicle radius. Radial contour fluctuations are then expected to satisfy [5, Eqs. (11),(14)]

πrv
3

2

(
⟨c 2

m⟩ − ⟨cm⟩2
)

=
kBθ

2λc

(
1

qx
− 1√

qx
2 + 2λc/kb

)
, where cm :=

√
a 2
m + b 2

m (60)

for m = qxrv. The right-hand side of Eq. (60) is the y-axis of Fig. 5 in the main text: ℓc⟨|h̃qx|
2⟩.

We now aggregate experimental measurements of the left-hand side of Eq. (60) from prior studies.

https://github.com/sahu-lab/osmosis-flat
https://apps.automeris.io/wpd4/
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Analysis of Faizi et al. (Soft Matter, 2020)

In Faizi et al. [6], the instantaneous radial profile of the vesicle cross-section is decomposed into
Fourier modes as

r(φ, t) = rv

(
1 +

mmax∑
m=−mmax

ûm(t) eimφ

)
, (61)

where the coefficients ûm are complex. In comparing Eqs. (59) and (61), we find

û0(t) =
rv(t)

rv
− 1 , ûm =

(
am − ibm

) rv(t)
2rv

, and û−m =
(
am + ibm

) rv(t)
2rv

. (62)

Consequently, 4⟨|û2m|⟩ = ⟨c 2
m⟩ − ⟨cm⟩2, and Eq. (60) can be expressed as

2πrv
3
⟨
|û2m|

⟩
=

kBθ

2λc

(
1

qx
− 1√

qx
2 + 2λc/kb

)
. (63)

In Fig. 1 of Ref. [6], ⟨|û2m|⟩ is plotted as a function of m. We scale their x-axis by 1/rv and their
y-axis by 2πrv

3 to generate the corresponding data in Fig. 5 of the main text, where we approximate
rv ≈ 3 · 104 nm from their inset to Fig. 1.

Analysis of Rautu et al. (Soft Matter, 2017)

While Rautu et al. [7] investigates how optical projection affects the observed radial contour fluc-
tuations, we interpret the data in Fig. 2(a) as the amplitudes ⟨|û2m|⟩ [cf. Eq. (61)]. Accordingly, we
scale their x-axis by 1/rv and their y-axis by 2πrv

3.

Analysis of Pécréaux et al. (Eur. Phys. J. E, 2004)

The analysis of radial vesicle fluctuations by Pécréaux et al. [5] is fundamental to our own under-
standing. In Fig. 6 of their work, experimental data is presented as in Fig. 5 of the main text of
the present study. No scaling of the data is required.

Analysis of Park et al. (Soft Matter, 2022)

In Park et al. [8], vesicles containing many motile bacteria are analyzed. Such vesicles exhibit
enhanced long-wavelength fluctuations, while shorter-wavelength modes are unchanged. We extract
the unaltered fluctuation data from Fig. 6(c). In doing so, we found there is a 1/rv discrepancy
between the plotted modes and theoretical fit, when rv is measured in microns. Though their y-axis
is labeled (in our notation) as ℓc⟨|h̃qx|

2⟩/rv3, the data is in fact ℓc⟨|h̃qx|
2⟩/(1000 rv2) when all lengths

are measured in nanometers. We thus scale their x-axis by 1/rv and their y-axis by 1000 rv
2.

Analysis of Takatori & Sahu (Phys. Rev. Lett., 2020)

Figure 1 of Takatori & Sahu [9] reports, in our notation, ℓc⟨|h̃qx|
2⟩/rv3 versus m = qxrv. In the

present study, we take the passive vesicle data and respectively scale the x-axis and y-axis by 1/rv
and rv

3.
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Analysis of Vutukuri et al. (Nature, 2020)

An active vesicle is shown in Fig. 1(g) of Vutukuri et al. [10], and is stated to have a surface
tension λc = 0.025 pN/nm. With a bending modulus kb = 42kBθ = 174 pN·nm, we determine
q−0 = 8.8 · 10−3 nm−1. Moreover, with a vesicle radius rv ≈ 104 nm, qx = m/rv is less than q−0 for
m = {1, 2, . . . , 88}. Thus, the first 88 modes lie outside the dome and should be excluded from the
determination of membrane material properties. We are curious to see where the first 88 modes
would fall in Fig. 5 the main text. Unfortunately, the high-tension fluctuation data is—to the best
of our knowledge—not publicly available.
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