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1. EXPERIMENTAL METHODOLOGY

The main text contains a description of our experimental methods; in this section, we provide additional experimen-
tal details. Membrane fluctuations were measured by epifluorescence microscopy using a Nikon Eclipse Ti inverted
microscope with a 60x/NA 1.4 Plan Apo objective. We recorded hundreds of consecutive images of the equatorial
cross-section of a vesicle with a digital CCD camera, with an exposure time of 50 ms. An in-house code, based on
Canny edge detection, was used to detect the edges of the membrane vesicle, and existing methods were applied to
compute the transverse height fluctuations of giant unilamellar vesicles [1, 2].

The positions of the membrane edge are projected onto a Fourier series with 50 modes, according to

r(θ, t) = R(t)

(
1 +

50∑
m=1

am cos(mθ) + bm sin(mθ)

)
, (1)

where R(t) is the vesicle radius at time t and m is the mode number. The height fluctuations of the membrane are
given by

⟨∣∣ĥ(kx, t)∣∣2⟩ = πR3
0

2

(
⟨|cm|2⟩ − ⟨|cm|⟩2

)
, (2)

where R0 = ⟨R(t)⟩ is the time-averaged vesicle radius, kx = m/R0 is the wave vector, and the Fourier coefficients
|cm| = (a2m+b2m)1/2. As only the transverse fluctuations along the equatorial cross-section of the vesicle are captured in
the experiments, our data is implicitly averaged over longitudinal, out-of-focus fluctuations. Accordingly, we average
our analytical theory over one of the two independent modes, such that our passive experimental results can be
compared to equilibrium theory.

In practice, one long experimental acquisition was broken into 30 independent segments, and the fluctuations were
computed for each segment. All experimental results in this work report a mean over these independent segments,
with the relative error computed as 0.434× σ(⟨|ĥ|2⟩)/χ(⟨|ĥ|2⟩—where σ(z) and χ(z) are the standard deviation and
mean of a set of data z. We use the method described in Ref. [3] to report symmetric error bars on a logarithmic
scale.

As noted in other studies [4, 5], fluctuations with a lifetime shorter than the integration time of the camera (i.e.
aperture time of the camera shutter) are not correctly fitted. For the active vesicles, where fluctuation amplitudes
are large and long lasting, we do not anticipate the finite camera integration time to influence our results.

1.1 Results

Here, we present experimental results, using the methodology described above to compute the Fourier transform of
vesicle deformations as well as their fluctuation spectrum. Figure 1(a) shows an instantaneous snapshot of a vesicle
with a protrusion caused by contact forces of a motile B. subtilis (top), and the corresponding radial profile of the
vesicle edge about its center (bottom). Figure 1(b) is the probability distribution of membrane deflections experienced
by the vesicle containing non-motile (‘passive’, in black symbols) and motile (‘active’, in red symbols) bacteria. Solid
curves are Gaussian distributions, where the width ℓ is a function of membrane bending stiffness, tension, and the
relevant driving force of the fluctuations. For passive vesicles, ℓ is governed by the thermal energy kBT , whereas the
active vesicles have a distribution governed by the activity scale ζU2

0 τR, where ζ is the hydrodynamic drag factor on
the motile bacteria, U0 is the swimming speed, and τR is the reorientation time of the bacteria. Because the activity
scale ζU2

0 τR ≫ kBT , the active probability distribution is significantly wider than its passive counterpart, as shown
in Fig. 1(b).

The aforementioned probability distributions demonstrate that when vesicles contain motile bacteria, the magnitude
of membrane deformation increases. We infer further information about the membrane deflections by plotting the
height fluctuation spectra, which are calculated according to Eqs. (1) and (2). Figure 2 shows the fluctuation spectrum
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(a) Instantaneous snapshot of a giant unilamellar
vesicle containing motile bacteria.
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(b) Distribution of membrane deflections with and
without active forces

FIG. 1. (a) Instantaneous fluorescence image of a giant unilamellar vesicle containing motile B. subtilis (not visible), and
corresponding Fourier transform analysis. Above, blue dashed circle corresponds to the vesicle baseline position about its
center, and the red dots indicate the location of the vesicle membrane edge. The scale bar is 10 µm. Below, black circles
are the radial positions along the vesicle edge, and the red curve is the Fourier series to the data. (b) Normalized probability
distribution of membrane deflections about the mean vesicle radius, for passive (black symbols) and active (red symbols) vesicles.
The distribution was computed by binning over the angular positions around the vesicle and measuring the height deflection
from the radial profile from (a). Solid curves are a fit to a Gaussian distribution, where ℓ is the width of the distribution.

100 101

−6

−5

−4

−3

m = kxR0

lo
g
(⟨
|ĥ
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(a) Passive membrane.
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(b) Active membrane.

FIG. 2. Membrane shape fluctuation spectra of giant unilammelar vesicles containing several non-motile (left) and motile
(right) B. subtilis PY79. Height fluctuations

⟨∣∣ĥ(kx)∣∣2⟩ are nondimensionalized with the average vesicle radius R0, and plotted
as a function of the mode number m = kxR0. The data above are plotted together in Fig. 2 of the main text. Error bars are
reported as described in Sec. 1, and include measurements from 30 independent time trajectories on the same vesicle.
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for passive (a) and active (b) vesicles. Comparing the two cases, there is a significant increase in magnitude of the
fluctuations, however only at low modes. In the subsequent sections, we derive a theory that elucidates the underlying
physics of these active fluctuations.

2. THEORY AND SIMULATION OF PASSIVE MEMBRANES

In this section, we model lipid membrane vesicles in thermal equilibrium with the surrounding fluid, following well-
established techniques [6, 7]. First, equilibrium statistical mechanics is used to determine the membrane fluctuation
spectrum. As equilibrium methods cannot be used to study the active membrane system of interest, we next present a
dynamical equation involving membrane–fluid interactions, which is shown to recover the same fluctuation spectrum.
Finally, we describe our methodology to simulate lipid membrane dynamics, which again is amenable to the addition
of active forces, and provide our numerical results. We note that none of the theoretical or computational results
in this section are new. Rather, we present these results for clarity, prior to extending them to active systems in
subsequent sections.

2.1. Equilibrium Theory

We begin by considering a fluctuating lipid membrane in thermal equilibrium at temperature T . The Hamiltonian
H of such a system was determined in the seminal works of P. B. Canham [8], W. Helfrich [9], and E. A. Evans [10],
and was found to be given by

H =

∫ (
2κH2 + λ

)
da . (3)

In Eq. (3), κ is the elastic bending modulus, H is the mean curvature, λ is the surface tension, and the integral is over
the membrane surface. The first term in the integral in Eq. (3) accounts for the energetic cost of membrane bending,
while the second term describes the energetic cost of creating additional area.

While lipid membranes may in general undergo arbitrarily large deformations, the present study is limited to
modeling the simpler case of nearly planar membranes undergoing only small out-of-plane deformations. To describe
such a membrane, the membrane height h(x, t) is specified above every point x = (x, y) in the x–y plane (Fig. 3). The
aforementioned surface description is called a Monge parametrization [11], and is commonly used in the description
of nearly planar membrane systems. A membrane patch with periodic boundary conditions is considered, such that
the region associated with one period lies above an L×L square in the x–y plane. For the case of small deformations,

x

y

z

(x, y)

h(x, y)

FIG. 3. A nearly planar lipid membrane patch. The membrane height h(x, y) is specified above every point (x, y) in the
x–y plane. The gray region depicts the [0, L] × [0, L] square over which the membrane is modeled, with periodic boundary
conditions.
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only terms up to second order in the height h are kept in the Hamiltonian (3), which simplifies to

H =
1

2

∫ (
κ(∇2h)2 + λ(∇h)2

)
da . (4)

As described in the main text, it is sometimes useful to describe lipid membrane fluctuations in Fourier space. To
this end, the two-dimensional Fourier transform and inverse Fourier transform are respectively defined as

ĥ(k, t) =
1

L

∫
dx e−ik·x h(x, t) (5)

and

h(x, t) =
1

L

∑
k

ĥ(k, t) eik·x . (6)

The inverse Fourier transform (6) sums only over discrete wave vectors k due to the periodic boundary condition
requirement. By substituting Eq. (6) into Eq. (4), and assuming different bending modes are independent, one obtains

H =
1

2

∑
k

(
κk4 + λk2

) ∣∣ĥ(k)∣∣2 . (7)

Applying the equipartition theorem to Eq. (7), the passive membrane fluctuation spectrum is found to be⟨∣∣ĥ(k)∣∣2⟩pas =
kBT

κk4 + λk2
. (8)

To compare experimental measurements of lipid membrane fluctuations to theoretical results, we recognize exper-
imental images are captured only at a single cross-section of the vesicle (see Fig. 1(a) in the main text). Thus, to
compare with experimental results, the membrane fluctuation spectrum is averaged over all ky modes according to

⟨∣∣ĥ(kx)∣∣2⟩ := 1

2π

∫ ∞

−∞

⟨∣∣ĥ(k, t)∣∣2⟩ dky . (9)

In the case of a passive vesicle in thermal equilibrium with the surrounding fluid, we substitute Eq. (8) into Eq. (9)
to obtain ⟨∣∣ĥ(kx)∣∣2⟩pas =

kBT

2λ

(
1

kx
− 1√

k 2
x + λ/κ

)
. (10)

Equation (10) is used to compare theoretical and experimental results, and is plotted in Fig. 4 as well as Fig. 2 of the
main text.

2.2. Non-Equilibrium Theory

The equilibrium results presented thus far rely on the equipartition theorem, which is not applicable in the presence
of active forces. Consequently, in this section we describe a non-equilibrium theory which (i) models a lipid membrane
sheet fluctuating in a Newtonian fluid, (ii) reproduces the membrane fluctuation spectrum (8), and (iii) is amenable
to modeling active forces. We first describe the general continuum equation describing the lipid membrane shape,
and then show how effects from the solvent are included. While the results of this section are well-known [6, 7], we
introduce ideas such that they can be easily extended to the case of active membranes.

2.2.1. General Dynamical Equation of a Lipid Membrane

For a nearly planar membrane without a base flow, the linearized equation governing the membrane shape is given
by

0 = [p] + λ∇2h− κ∇4h , (11)
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where [p] is the jump in the normal traction across the membrane surface. The two other terms in Eq. (11) describe
the internal membrane forces, arising from surface tension and bending effects, respectively, and have units of pressure.
For notational convenience, we define the internal membrane force per area pint as

pint := λ∇2h− κ∇4h , (12)

such that Eq. (11) can be written as 0 = [p] + pint.

2.2.2. Dynamical Equation with Surrounding Fluid

Thus far, we did not comment on the origin of the jump in the normal stress [p] across the membrane surface (11).
For the case of a passive membrane, [p] captures the jump in the pressure of the surrounding bulk fluid. In particular,
when a lipid membrane fluctuates in a fluid medium, it exerts forces on and experiences forces from the surrounding
fluid. Consider a local shape change in the membrane: the membrane exerts some force on the fluid at that location,
the force is transmitted through the fluid, and other regions of the membrane feel a resulting force. In this section, we
first describe how a point force affects the surrounding fluid, and then obtain a dynamical equation which explicitly
includes membrane–fluid interactions.

A Newtonian fluid with viscosity µ acted upon by a point force fδ(r) at location r := (x, y, z) = 0, with negligible
inertia, is governed by the Stokes equations

∇ · v = 0 and µ∇2v −∇p+ fδ(r) = 0 . (13)

The Green’s function solution of the pressure p and velocity v are well-known [12] to be given by

p(r) =
f · r
4πr3

and v(r) = Λ(r)f , (14)

where the Oseen tensor Λ(r) is defined as

Λ(r) :=
1

8πµr

(
I − r ⊗ r

r2

)
. (15)

Since the membrane deformations are assumed to be small, the forces on the fluid are primarily in the z-direction.
Moreover, the resultant pressure and velocity fields at the membrane surface can be approximated by setting z = 0
in Eq. (14). For f = fez and z = 0, the fluid pressure p(x, y, z = 0) = fδ(x)δ(y)/4π; the fluid velocity is given by

v(x, y, z = 0) =
f

8πµ
√
x2 + y2

ez . (16)

We also define the ez ⊗ ez component of the Oseen tensor at z = 0 as

Λ(x) :=
1

8πµ|x|
, (17)

where x = (x, y), such that Eq. (16) can be equivalently written as v(x, 0) = Λ(x) fez.
For a nearly planar lipid membrane in contact with the surrounding fluid, a no-slip boundary condition between

the membrane and the bulk fluid can be written as
∂h

∂t
(x, t) = vz(x, z = 0, t) + η(x, t) , (18)

where η(x, t) is a Gaussian random variable capturing perturbations from the surrounding fluid. Moreover, given a
field of point forces per unit area p(x, z = 0, t) on the fluid, the z-component of the fluid velocity at z = 0 is given by

vz(x, z = 0, t) =

∫
dx′ Λ(x− x′) p(x, z = 0, t) . (19)

The field p(x, z = 0, t) in this case is known to be the force on the fluid by the membrane, which is equal and opposite
to the force on the membrane by the fluid—the latter of which is [p]. Thus, according to Eq. (11),

p(x, z = 0, t) = −[p] = pint = λ∇2h− κ∇4h , (20)
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such that by combining Eqs. (18)–(20) we find the dynamical equation governing passive membrane fluctuations is
given by [6, 13]

∂h(x, t)

∂t
= η(x, t) +

∫
dx′ Λ(x− x′) pint(x′, t) . (21)

When characterizing the thermal forces on the membrane from the fluid, as well as when simulating membrane
height fluctuations, it is most convenient to work in Fourier space, where the height modes decouple. To take the
Fourier transform of Eq. (21), we first provide the well-known convolution theorem. For a general function f(x, t),
we have ∫

dx′ Λ(x− x′) f(x′, t) =

∫
dx′ 1

L

∑
k

Λ̂(k)eik·(x−x′) f(x′, t)

=
∑
k

Λ̂(k) eik·x
1

L

∫
dx′ f(x′, t) e−ik·x′

=
∑
k

Λ̂(k) f̂(k, t) eik·x ,

(22)

where in the first line we substituted the Fourier transform of Λ(x−x′), in the second line we rearranged terms, and
in the third line we recognized the form of f̂(k, t). With the result of Eq. (22) and the Fourier transform definitions
(5, 6), Eq. (21) can be written as

∂

∂t

(
1

L

∑
k

ĥ(k, t) eik·x
)

=
1

L

∑
k

η̂(k, t) eik·x +
∑
k

Λ̂(k) p̂int(k, t) eik·x , (23)

which implies

∂ĥ(k, t)

∂t
= LΛ̂(k) p̂int(k, t) + η̂(k, t) . (24)

The quantities Λ̂(k) and p̂int(k, t) are calculated as

Λ̂(k) =
1

4µkL
and p̂int(k, t) = −

(
λk2 + κk4

)
ĥ(k, t) , (25)

such that Eq. (24) can be written as

∂ĥ(k, t)

∂t
= −ω(k) ĥ(k, t) + η̂(k, t) , (26)

where the relaxation frequency ω(k) is given by

ω(k) =
1

4µ

(
λk + κk3

)
. (27)

In Eq. (26), the Fourier transform of the thermal noise, η̂(k, t), satisfies the fluctuation–dissipation theorem, such that⟨
η̂(k, t)

⟩
= 0 , (28)⟨

Re{η̂(k, t)} Im{η̂(k′, t′)}
⟩
= 0 , (29)⟨

Re{η̂(k, t)}Re{η̂(k′, t′)}
⟩
= kBTL Λ̂(k) δ(t− t′)

(
δk,k′ + δk,−k′

)
, (30)

and ⟨
Im{η̂(k, t)} Im{η̂(k′, t′)}

⟩
= kBTL Λ̂(k) δ(t− t′)

(
δk,k′ − δk,−k′

)
. (31)
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2.3. Simulation Methodology

In this section, we closely follow the simulation procedure detailed in Ref. [6]. Due to the decoupling of the height
modes in Fourier space, each mode is simulated independently. For a membrane over an L × L patch with periodic
boundary conditions, the allowed wave vectors are

k = (m,n)
2π

L
, m, n ∈ Z . (32)

A space of linearly independent wave numbers, Q, is defined as

Q =
{
(1 ≤ m ≤ M,n = 0) ∪ (0 ≤ m ≤ M, 1 ≤ n ≤ M)

}
, (33)

where M defines the largest wave vector considered. The mode k = 0 is ignored, as it describes only rigid translations
of the membrane patch.

To simulate the time evolution of the membrane height modes, Eq. (26) is integrated from time t to t+∆t to yield∫ t+∆t

t

dt′
∂ĥ(k, t′)

∂t′
= −ω(k)

∫ t+∆t

t

dt′ ĥ(k, t′) +

∫ t+∆t

t

dt′ η̂(k, t′) . (34)

Assuming ∆t is small, the integrand of the first term on the right-hand side of Eq. (34) is moved outside the integral.
Defining

R̂(k, t;∆t) :=

∫ t+∆t

t

dt′ η̂(k, t′) , (35)

Eq. (34) can be written as

ĥ(k, t+∆t) =
(
1− ω(k)∆t

)
ĥ(k, t) + R̂(k, t;∆t) . (36)

The complex Gaussian random noise R̂(k, t;∆t) has mean zero and variance given by

⟨
R̂(k, t;∆t) R̂∗(k, t;∆t)

⟩
=

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
⟨
η̂(k, t′)η̂∗(k, t′′)

⟩
=

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′
(⟨

Re{η̂(k, t′)}Re{η̂(k, t′′)}
⟩

+
⟨
Im{η̂(k, t′)} Im{η̂(k, t′′)}

⟩)
= 2kBTLΛ̂(k)∆t ,

(37)

where in the first equality Eq. (35) was substituted, in the second equality η̂ was split into real and imaginary parts and
Eq. (29) was used to eliminate cross terms, and in the third equality Eqs. (30) and (31) were substituted. Defining r1
and r2 to be independent, normally distributed random numbers, the height modes are evolved numerically according
to

ĥ(k, t+∆t) =
(
1− ω(k)∆t

)
ĥ(k, t) +

(
r1 + i r2

)√
kBTLΛ̂(k)∆t . (38)

Note that in Eq. (38), r1 and r2 are used to distribute the random noise in both the real and imaginary directions, each
with a variance of one-half the result of Eq. (37). In practice, the real and imaginary components of the height modes
are simulated independently. Our code to calculate the fluctuation spectrum by evolving height modes according to
Eq. (38) is provided at https://github.com/mandadapu-group/active-contact.

2.4. Theoretical, Numerical, and Experimental Results

We now present the results of passive numerical simulations to (i) show the numerical scheme reproduces equilib-
rium fluctuations, and (ii) demonstrate how simulations are compared to experiments. For each wave vector k, the

https://github.com/mandadapu-group/active-contact
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FIG. 4. Passive thermal fluctuations of a lipid membrane in thermal equilibrium with the surrounding fluid. (a) Comparison
of dynamical simulations, as described in Sec. 2.3 (blue triangles) and the known equilibrium result of Eq. 8 (black curve).
The quantitative agreement indicates the code is working as expected. (b) The result of averaging the simulation result and
theoretical prediction over ky modes, according to Eq. (39). (c) Experimental passive data overlaid on the averaged passive
result. The systematic discrepancy at large kx occurs due to the pixel resolution of the camera. In all simulations and presented
theoretical results, parameters are λ = 4 · 10−3 pN/nm, κ = 14.3 kBT at T = 30◦C, R0 = 4µm, µ = 0.7972 mPa·s, and height
fluctuations were simulated over 0.7 s.

simulations generate Re{ĥ(k, t)} and Im{ĥ(k, t)} over time, with which
⟨∣∣ĥ(k, t)∣∣2⟩pas is calculated. As shown in

Fig. 4(a), the simulations (blue triangles) exactly match the known theoretical result (Eq. (8), black line).
As vesicles are imaged experimentally at a single cross-section, all Fourier modes orthogonal to this cross-section

are implicitly summed over. To compare simulation results with experiments, the height fluctuations of the nearly
planar membrane are averaged over ky modes according to Eq. (9). In practice, the averaging is done numerically,
according to

⟨∣∣ĥ(kx, t)∣∣2⟩ = 2

L

M∑
n=0

⟨∣∣ĥ(k = (kx, 2πn/L), t
)∣∣2⟩ . (39)

Moreover, the length L in simulations is set to L = 2πR0, where R0 is the radius of the undeformed membrane vesicle,
to be consistent with the Fourier transform of experimental data (see Eq. (1)). In averaging our simulation results
according to Eq. (39), we obtain the results shown as blue triangles in Fig. 4(b), which agree with the theoretical
calculation of Eq. (10) (black line). In Fig. 4(c), the data contained in Fig. 4(b) are overlaid with experimental data.
Figure 4(c) contains the same information as the passive portion of Fig. 2 in the main text, following the same color
scheme.

3. THEORY AND SIMULATION OF ACTIVE MEMBRANES

In this section, the non-equilibrium theory and simulations of Sec. 2 are extended to model lipid membrane vesicles
acted upon by active bacterial contact forces. When bacteria push on the membrane surface, a new force enters the
membrane shape equation, which in turn is transmitted throughout the fluid to exert forces at other locations on the
membrane surface. Importantly, we spread the bacterial contact force over the width of a bacterium, and recognize
the characteristic duration of bacterial–membrane contact is much larger than the timescale of membrane fluctuations,
1/ω(q). As a result, the membrane fluctuation spectrum can be written as the sum of two terms: an equilibrium term
identical to that of a passive membrane, and an active term involving details of the bacterial contact force.

3.1. Non-Equilibrium Contact Theory

With a model for the dynamical height fluctuations of a passive membrane vesicle, we now seek to describe the
active membrane fluctuations resulting from self-propelled bacteria contained within a membrane vesicle. The active
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particles exert a force on the membrane, which we approximate by the active force per area

pact =

Nc∑
j=1

p̄ ϕ(t; tj) exp

{
− (x− xj)

2

2a2

}
. (40)

In Eq. (40), Nc is the number of collision events, with the jth active particle–membrane collision occurring at time tj
and position xj . The only dimensional quantity on the right-hand side of Eq. (40) is p̄, which captures the maximum
pressure exerted by the particle on the membrane. As a simple approximation, we set p̄ = 2λ/a, where a is the
half-width of a bacterium and p̄ would be the pressure exerted by a membrane on a sphere of radius a. The Gaussian
contribution in Eq. (40) describes the spreading of the particle–membrane contact point force over an area. Lastly,
ϕ(t; tj) approximates the temporal nature of the particle–membrane collision. As shown in Fig. 3b in the main text,
ϕ(t; tj) is an isosceles trapezoid centered at time tj with top length τR and bottom length τR + 2τP; τP ≈ 0.05 sec is
an estimate of how long it takes for a bacterium to come to a complete stop due to elastic membrane forces, once it
makes initial contact with the membrane.

With a characterization of the active forces on the membrane, we follow an identical procedure to that of the passive
case. The jump in the normal traction acting on the membrane is now given by [p] = −ptot + pact, such that the
magnitude of the total force per area ptot acting on the membrane by the surrounding fluid can be written as

ptot(x, t) = pint(x, t) + pact(x, t) . (41)

Recognizing p(x, z = 0, t) = ptot (c.f. Eqs. (19) and (20)), we find the active analog of Eq. (21) is given by

∂h(x, t)

∂t
= η(x, t) +

∫
dx′ Λ(x− x′)

[
pint(x′, t) + pact(x′, t)

]
. (42)

Again taking the Fourier transform of Eq. (42) and using the convolution theorem (22), we obtain

∂ĥ(k, t)

∂t
= −ω(k) ĥ(k, t) + η̂(k, t) + LΛ̂(k) p̂act(k, t) , (43)

where the Fourier transform of the active pressure is calculated to be

p̂act(k, t) =

Nc∑
j=1

a2 p̄

R0
ϕ(t; tj) exp

{
− ixj · k − a2 k2

2

}
. (44)

In Eq. (44), we substituted L = 2πR0 to simplify the expression. By substituting Eqs. (25)1 and (44) into Eq. (43),
we obtain

∂ĥ(k, t)

∂t
= −ω(k) ĥ(k, t) + η̂(k, t) +

Nc∑
j=1

a2 p̄

4µkR0
ϕ(t; tj) exp

{
− ixj · k − a2 k2

2

}
. (45)

Equation (45) is presented as Eqs. (3) and (4) in the main text. As discussed in the main text, an approximate
solution of the height fluctuation spectrum given by Eq. (45) is found to be

⟨|ĥ(k)|2⟩ =
kBT

κk4 + λk2
+

Np τR

τT + τR

(
a2 p̄/R0

κk4 + λk2

)2
e−a2k2

, (46)

where Np is the number of enclosed bacteria, τR is the bacteria reorientation time, and τT is the time it takes the
bacteria to travel from one side of the vesicle to the other.

3.2. Simulation Methodology

Just as the active non-equilibrium theory is an extension of its passive analog, we extend the passive simulation
methodology to simulate lipid membrane vesicles being acted upon by active contact forces. By integrating Eq. (45)
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FIG. 5. Active lipid membrane fluctuations. (a) Simulation results (red triangles) show excellent agreement with the
theoretical prediction (black curve, expression in main text). (b) Experimental data overlaid on the same plot. Again, the
system leveling off of the experimental fluctuations at large kx occurs due to camera resolution and the intrinsic noise present
at large wave vectors. All simulation parameters are identical to those detailed in Fig. 4, and additional details can be found
in our code—provided at https://github.com/mandadapu-group/active-contact.

from time t to t + ∆t and recognizing only the active pressure term is new, we find the height modes are evolved
according to

ĥ(k, t+∆t) =
(
1− ω(k)∆t

)
ĥ(k, t) +

(
r1 + i r2

)√
kBTLΛ̂(k)∆t

+

Nc∑
j=1

a2 p̄∆t

4µkR0
ϕ(t; tj) exp

{
− ixj · k − a2 k2

2

}
.

(47)

As before, the real and imaginary components of each membrane mode is simulated independently. In code, the
number of collisions Nc = Np · tsim/(τR + τT), where Np = 7 is the number of particles, tsim = 7 sec is the total
simulation time, τR = 0.5 sec is the bacterial reorientation time, and τT = 0.5 sec is the traversal time—the latter of
which is the time it takes for the bacteria to go from one end of the vesicle to another, given the bacterial swim speed
U0 ≈ 15µm/s. Moreover, the collision times tj and position xj are chosen randomly from a uniform distribution
of times in the range [0, tsim] and positions in the range [0, L] × [0, L], respectively. Again, our code is provided at
https://github.com/mandadapu-group/active-contact.

3.3. Results

As shown in Fig. 5(a), there is excellent agreement between our simulation results and the theoretical prediction
of Eq. (46). Note that Fig. 5 contains the same data as was presented in the main text, for which Np ≈ 7 and
R0 ≈ 4 µm. To test the robustness of our theoretical model, we now also provide an analysis of two additional active
vesicles, as shown in Fig. 6: one with Np ≈ 10 and R0 ≈ 8 µm, and another with Np ≈ 20 and R0 ≈ 15 µm. In these
experiments, the passive data was not available, and so the surface tension and bending modulus for these vesicles
could not be obtained. In our analysis, we used the values of λ and κ from the 7-particle case. However, as we show in
the following section, our theoretical results are insensitive to the values of λ and κ, and so we still obtain reasonable
predictions given this limitation.

As seen in Fig. 6(a), the 10-particle vesicle again shows excellent agreement between experiments, simulation, and
theory, thus demonstrating the validity of our numerical and analytical developments. The results from the 20-
particle vesicle, on the other hand, suggest where our theory begins to break down. As shown in Fig. 6(b), although
there is generally good agreement with the experimental data, there is a slight difference in the shape of the latter:
active fluctuations at lower modes are slightly suppressed, while active fluctuations at intermediate modes are slightly
enhanced. We believe this qualitative change is due to there being more bacteria enclosed within the vesicle. As can be
seen from Figs. 6(c)–6(e), there are now often times where multiple bacteria contact a local portion of the membrane
in quick succession. Due to their persistent motion, active particles have a tendency to accumulate at surfaces [14, 15],

https://github.com/mandadapu-group/active-contact
https://github.com/mandadapu-group/active-contact
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(b) Active fluctuations: R0 ≈ 15 µm, Np ≈ 20

(c) Snapshot of a GUV (radius ≈ 15
µm) containing ≈ 20 motile bacteria,
which are visible as black objects in

the brightfield image.

(d) Fluorescence image of the same
GUV at a different time, which is

used for height fluctuation analysis.

0 /2 3 /2 2

12
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(e) Deformation of the membrane as a
function of angle around the GUV.

FIG. 6. Experimental data for shape fluctuations of bacteria-containing vesicles, in two cases: (a) GUV with radius R0 ≈ 8
µm and Np ≈ 10 bacteria, and (b) GUV with radius R0 ≈ 15 µm containing Np ≈ 20 bacteria. (c)–(d) Instantaneous
snapshots of the vesicle corresponding to case (b), via brightfield and fluorescence imaging. In (d), the red curve denotes the
membrane contour, calculated using an edge-detection algorithm. (e) Membrane deformation as a function of arclength around
the membrane perimeter. Black symbols are data and the red curve is the Fourier spectra to obtain the height fluctuations.

and it seems that in the 20-particle vesicle such effects are no longer negligible. Importantly, when multiple bacteria
contact nearby regions of the membrane in rapid succession, large wavelength modes are effectively converted into
shorter wavelength ones, as can be seen by comparing Fig. 1(a) with Fig. 6(e). In the former, the membrane receives
isolated, single perturbations that relax fully before the membrane receives the next active perturbation, while in
the latter, there is a superposition of many active perturbations which occur simultaneously—effectively decreasing
the magnitude of low modes and increases the magnitude of intermediate ones. We thus find that while our theory
captures the shape fluctuations of active membranes a cross a range of vesicle sizes and active particle numbers, it is
most accurate when particle numbers are low and bacteria–bacteria correlations do not significantly affect bacteria–
membrane interactions.

3.4 Parameter sensitivity analysis of theoretical model

In considering the experimental system, there are seven fundamental parameters: the bending modulus κ, surface
tension λ, vesicle radius R0, number of bacteria Np, bacterial reorientation time τR, bacterial half-width a, and
bacterial velocity U0. From these, we approximate the magnitude of the contact pressure as p̄ ≈ 2λ/a and the
bacterial traversal time τT ≈ 2R0/U0. We have already experimentally demonstrated how changes to Np and R0 alter
the active fluctuation spectrum, however the remaining parameters are not easily modified experimentally. Thus, we
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|ĥ
(k

x
)|2

⟩/
(R

0
)3
)

(d) swim speed U0

100 101

−7

−6

−5

−4

−3

m = kx R0

lo
g
(⟨
|ĥ
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FIG. 7. Sensitivity analysis of the theoretical result, Eq. (46), to changes in parameter values. In all cases, the red line is the
theoretical result presented in Fig. 2 of the main text, and the open circles are the active fluctuation data. For plots (a)–(d),
the green line represents a decrease in the chosen parameter by a factor of two, while the blue line represents an increase in the
chosen parameter by a factor of two. For plot (e), as the analytical expression is sensitive to the bacterial half-width through
the exponential term, the green line represents a decrease in the bacterial half-width by 50%, while the blue line represents an
increase in the bacterial half-width by 50%.

understand how our theoretical results would change due to variations in the remaining fundamental parameters via
a sensitivity analysis. As shown in Fig. 7, our analytical prediction is relatively sensitive to changes in the bacterial
half-width a, but otherwise fairly insensitive to changes in the remaining parameters.

4. SUPPLEMENTAL VIDEOS

Below, we describe the Supplemental Videos associated with this manuscript. In all movies, the time stamp
corresponds to minutes:seconds.

S1. Fluorescence movie of a giant unilamellar vesicle (GUV) containing several non-motile B. subtilis.

S2. Brightfield movie of a GUV containing several motile B. subtilis. The vesicle edges can be seen as a thin
black line.

S3. Fluorescence movie of the same GUV as in Vid. S2, containing several motile B. subtilis. Bacteria are
non-fluorescent and are not visible in this movie.

S4. Merged fluorescence and brightfield movie of the same GUV containing several motile B. subtilis.

S5. Merged fluorescence and brightfield movie of a floppy GUV containing motile B. subtilis. Membrane
deformations are larger for this GUV.

S6. Merged fluorescence and brightfield movie of a GUV containing Janus particles in the absence of hydrogen
peroxide. The scale bar is 10 µm.
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S7. Merged fluorescence and brightfield movie of a GUV containing Janus particles in the presence of 0.5%
hydrogen peroxide. Self propulsion of the Janus particles can be observed and their collisions with the membrane.

S8. Merged fluorescence and brightfield movie of a GUV containing many motile B. subtilis. Deformations are
very large and thin membrane tubes can be seen. Each membrane tube contain a few bacteria that collided into
the membrane.

[1] J. Pécréaux, H.-G. Döbereiner, J. Prost, J.-F. Joanny, and P. Bassereau, Eur. Phys. J. E 13, 277 (2004).
[2] F.-C. Tsai, B. Stuhrmann, and G. H. Koenderink, Langmuir 27, 10061 (2011).
[3] D. Baird, Experimentation: An Introduction to Measurement Theory and Experiment Design (Benjamin Cummings, 3rd

Ed., 1994).
[4] P. Méléard, J. Faucon, M. Mitov, and P. Bothorel, Europhys. Lett. 19, 267 (1992).
[5] P. Méléard, T. Pott, H. Bouvrais, and J. H. Ipsen, Eur. Phys. J. E 34, 116 (2011).
[6] K. Sapp and L. Maibaum, Phys. Rev. E 94, 052414 (2016).
[7] L. C.-L. Lin and F. L. H. Brown, Phys. Rev. Lett. 93, 256001 (2004).
[8] P. B. Canham, J. Theor. Biol. 26, 61 (1970).
[9] W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

[10] E. A. Evans, Biophys. J. 14, 923 (1974).
[11] G. Monge, Application de l’analyse à la géométrie (Bernard, 1807).
[12] L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge Series in

Chemical Engineering (Cambridge University Press, 2007).
[13] H. Turlier and T. Betz, “Fluctuations in active membranes,” in Physics of Biological Membranes, edited by P. Bassereau

and P. Sens (Springer International Publishing, Cham, 2018) pp. 581–619.
[14] W. Yan and J. F. Brady, J. Fluid Mech. 785, R1 (2015).
[15] N. Nikola, A. P. Solon, Y. Kafri, M. Kardar, J. Tailleur, and R. Voituriez, Phys. Rev. Lett. 117, 098001 (2016).

http://dx.doi.org/10.1140/epje/i2004-10001-9
http://dx.doi.org/10.1021/la201604z
http://dx.doi.org/10.1209/0295-5075/19/4/004
http://dx.doi.org/10.1140/epje/i2011-11116-6
http://dx.doi.org/10.1103/PhysRevE.94.052414
http://dx.doi.org/10.1103/PhysRevLett.93.256001
https://doi.org/10.1016/S0022-5193(70)80032-7
http://dx.doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1016/S0006-3495(74)85959-X
http://dx.doi.org/10.1017/CBO9780511800245
http://dx.doi.org/10.1007/978-3-030-00630-3_21
http://dx.doi.org/10.1017/jfm.2015.621
10.1103/PhysRevLett.117.098001

